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ABSTRACT

Purpose. Demonstrate the feasibility of a new class of experimental computational models built
using the synthetic method. Study the consequences of spatial alignment, or lack thereof, of Pgp
and CYP3A4 on the transport and metabolism of drug-like compounds and the influence of
competitive inhibition by metabolites on the transport and metabolism of those compounds.
Methods. The synthetic method of modeling and simulation was used to construct discrete event,
discrete space models. Within a framework designed for experimentation, object-oriented
software components were assembled into devices representing the efflux transport and
metabolism mechanisms within cell monolayers in Caco-2 transwell systems.

Results. Conditions for transport and metabolism synergism (and lack thereof) were identified.
Simulations showed how spatial alignment altered the coordinated influences of Pgp and
CYP3A4 on absorption of a series of drug-like compounds. Within those experiments, when the
metabolites were also substrates of Pgp, the metabolite levels produced were insufficient to give
evidence of a competitive inhibitory effect on either transport or metabolism.

Conclusions. The results provide convincing support for the feasibility of using this new class of
models to improve our understanding of how complex cellular processes influence the transport
and absorption of compounds, and the consequences of interventions.

KEY WORDS: Drug absorption; agent-based modeling; simulation; P-glycoprotein; CYP3A4.

INTRODUCTION

By improving our understanding of how the intra- and intercellular processes within the small
intestine collectively act to influence the transport of compounds, our ability to make predictions
more reliable and to anticipate the consequences of interventions will also improve (1). One of
the best ways to understand how a complex system functions is to build a functioning analog of
that system that exhibits some of the phenomena of interest. Many in vitro and in situ models
used to study drug metabolism are intended to do that. However, all of the complexity of these
model systems resides in their living parts, and using biotechnological methods (that start with
inert components) to construct analogs of those living parts will remain infeasible for the near
future. The traditional approach continues to be to study and experiment on those in vitro and in
situ models, as well as the referent organisms, and then to induce mechanistic explanations that
adequately account for the patterns observed in collected transport and absorption data. The more
useful and predictive explanations have typically been based on sets of differential equations.
The equations provide abstract descriptions of the behavior of the hypothesized mechanisms
under the conditions specified. Examples are discussed by Grass (2).

We report on a new computational approach to augment the traditional approach. In silico
components, built using object-oriented programming, are used to construct and synthesize
working devices that implement hypothesized mechanisms. The components can be made to
realistically represent biological counterparts, as needed, at a level of detail appropriate for the
available knowledge and data. Our goal is to build synthetic, in silico models of the intestine and
connected tissues that are suitable for studying the mechanisms, conditions, and interventions
hypothesized to influence drug absorption. We recently described models that mimic aspects of
confluent Caco-2 cells growing in a transwell system (3). The models are transparent and
intuitive, and all of the components map logically to cellular and transwell system counterparts.
We reported results of experiments that verified the key model design features, including the
ability to reliably represent passive paracellular and transcellular transport, carrier-mediated
transport, and active efflux transport for simulated compounds having a wide range of
physicochemical properties. In addition, specifically parameterized devices generated acceptable
matches to reported in vitro transport data for alfentanil and digoxin. We have used the same
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type of devices for the studies described herein. They are intended to function as in silico analogs
of transwell systems containing a layer of epithelial cells; hereafter we refer to such a device as
an in silico transwell system (ISTS).

We now aim to demonstrate the feasibility of using ISTSs to help study how the mechanisms
of transport, efflux, and metabolism interact through common substrates to influence the transport
and metabolism of drug-like compounds. We also want to identify system specifications that
give rise to efflux-metabolism synergy and those that do not. We add to the case for feasibility
by showing that ISTSs can be used to test hypotheses about how the interplay between an efflux
transporter, such as P-glycoprotein (Pgp), and a Phase I metabolic enzyme, such as CYP3A4, is
believed to influence the intestinal absorption of drug-like compounds (4). The software
components used to represent transporters and metabolic enzymes are generic. Hereafter, Pgp
and CYP3A4, the most documented pair, is the example studied.

It has been proposed that Pgp and CYP3A4 might act as a coordinated molecular barrier to
drug intestinal absorption because of the significant overlap of their substrate specificities (5).
The fact that they co-localize near the apical side of enterocytes and can be co-induced and co-
inhibited by many compounds (6), has led some to suggest that Pgp and CYP3A4 synergy helps
reduce the absorption of dual substrate compounds (7, 8). The increased absorption caused by
inhibition of both Pgp and CYP3A4 is taken as evidence of that synergism.

Because it is inherently difficult to represent spatially localized phenomena in an equation-
based model, no traditional models have been proposed to study the consequences of Pgp and
CYP3A4 being spatially aligned. However, Ito et al. (9), using a compartment pharmacokinetic
model, has shown that the fraction absorbed is synergistically elevated by simultaneous inhibition
of both Pgp and CYP3A4. If one could control the relative intracellular location of Pgp and
CYP3A4 within Caco-2 or the other cell lines, then it would be possible to experimentally
measure the importance of spatial alignment, but such technology is not available.
Computationally, it is easy to control the location of counterparts of Pgp and CYP3A4 within an
ISTS and thereby examine the consequences of their spatial alignment. We speculated that
alignment may be just one of several factors interacting to influence synergy. It seemed clear that
spatial alignment of Pgp and CYP3A4 would cause synergy for a dual substrate compound. The
degree of synergism when Pgp and CYP3A4 locations are uncorrelated under the same conditions
was, however, unclear, and so merited study. We hypothesized that, when locations are
uncorrelated, the contribution of Pgp—CYP3A4 synergism to the transport properties of dual
substrate compounds would be influenced by the density of Pgp and CYP3A4, as well as by the
relative, Pgp-compound and CYP3A4-compound affinities.

It has been proposed that Pgp can also enhance intestinal drug metabolism by facilitating the
removal of metabolites, thereby preventing competitive inhibition of the enzyme by its metabolite
(10). However, there are two reasons why Pgp-mediated efflux cannot be generalized to all
CYP3A4 metabolites. First, some metabolites do not show selective efflux to the apical side of
epithelial monolayers. Second, some of the preferential apical distribution that has been observed
is not changed by Pgp’s inhibition (11, 12). Consider the case where metabolites of CYP3A4 are
also Pgp’s substrates and they can interact with CYP3A4, thus inhibiting drug access. If drug
efflux is being competitively blocked by the already existing metabolites, will there be altered
metabolism of the parent drug? To date, it has been difficult to address such questions in wetlab
experiments, in part because the available compounds (and their metabolites) often do not have
the required combination of properties. With the technology described herein, it is now also
possible to address such questions using in silico experimentation. Within an ISTS we can
control the affinities of each in silico metabolite for simulated Pgp and CYP3A4 components.
Toward this aim, two sets of identical in silico compounds were created: all the metabolites of the
first set are substrates for the simulated Pgp, whereas none of the metabolites in the second set are
substrates. The expectation was that if the competitive inhibitory effect on either efflux or



metabolism is significant under the conditions of our experiments, then there will be evident
differences in the overall transport properties of the two sets.

The results of our in silico experiments verify that ISTSs do generate transport and
metabolism behaviors similar to those observed in the experiments using the in vitro CYP3A4-
transfected Caco-2 transwell system for single and dual substrate compounds. The separate and
combined simulated influences of Pgp and CYP3A4 on the in silico transport of 17 virtual
compounds have been systematically documented. We have used that data to explore two
mechanistic questions and tested the related hypotheses. Correlated spatial alignment had a
unique effect on the coordinated influences of simulated Pgp and CYP3A4 on simulated
absorption. However, for the ISTSs described, there was no evidence of a competitive inhibitory
effect on either transport or metabolism from the simulated metabolites that were substrates of
simulated Pgp. Taken together the results provide convincing support for the feasibility of
developing and using synthetic models to improve our understanding of how the complexity of
cellular processes influences absorption. Further experimentation with ISTSs is expected to
provide improved insights and specifically suggest targeted experiments to challenge new
insights.

METHODS

Model Structure, Design, and Assumptions

The structure of the ISTS is illustrated in Fig. 1 and detailed by Liu and Hunt (3). It mimics
essential features of a CYP3A4-transfected Caco-2 cell monolayer in a cell culture transwell
system (13). The ISTS represents an arbitrary width, vertical column section through the entire
transwell system. This section is sliced virtually into five stacked segments. Each segment is
represented by a discrete 2D space (e.g., a 100 x 100 grid). The components of interest within the
five spaces—compounds, cells, enzymes, metabolites, etc.—are represented as objects. All
processes are represented by a set of discrete-event driven behavioral causality relations. Each
process in the ISTS represents a known or hypothesized biological mechanism. Discrete time
steps are used to represent continuous time. When used within an appropriate simulation
framework, the resulting software devices can operate in ways that represent the hypothesized
biological mechanisms within epithelial monolayers, at the level of detail and resolution needed
to meet a particular research objective. We therefore refer to them as being biomimetic. The
resulting devices are examples of a class of object-oriented, hierarchical, modular simulation
models that are being developed within other scientific and technical domains (14, 15). Several
distinctions are provided in the Discussion section between this class of models and traditional
equation-based models.

Grid dimensions and the width and depth of the vertical column in Fig. 1 all control the
system resolution. New spaces can be added by plugging in new grids without having to
reengineer the model. G/ represents a portion of the apical lumen compartment and the fluid in
the transwell insert. G2 represents the apical membranes of the cell monolayer and the junctions
between cells viewed from the apical side. G3 represents the intracellular spaces. G4 represents
the basolateral membranes and the junctions between cells viewed from the basolateral side.
Within G2 and G4, a parameter controls the prevalence of simulated tight junctions between cells.
A percentage of grid points in each of these two spaces are chosen randomly to represent
junctions; the remaining grid space represents cell membranes. G5 represents a portion of the
basolateral compartment and the fluid in the cell culture well. These spaces accommodate other
system components.

[ Figure 1 ]



Differently parameterized ISTSs are used and measured during in silico experiments in the
same way as a Caco-2 monolayer within a biological transwell system. The ISTS framework is
built of modular components using the Java layer of the Swarm platform (16). Within the
computational framework, we have an agent, the Experiment Agent, to manage experiments. It is
the in silico counterpart to the researcher conducting wetlab experiments. When needed, a Data
Model can be used to hold data from in vitro experiments. A Reference Model can be one of the
existing mathematical models (e.g., a pharmacokinetic model in Ito et al. (9)) that are used to
represent drug transport through cell monolayers or the small intestine. The Experiment Agent
reads inputs from the Parameter Manager and transfers that information to the ISTS. Simulation
results are collected in the Data Management Module for statistical processing.

System Components

To avoid confusion and clearly distinguish in vitro components and features from
corresponding in silico components and features, such as a “cell,” a “drug,” or “metabolism,” we
use SMALL CAPS when referring to the in silico components. A mobile object called DRUG
represents actual drug molecules. Seventeen different DRUGS were used; their properties are
listed in Table I. A typical DRUG represents more than one molecule and can move within and
among spaces. Movement of a free DRUG to an adjacent, less-crowded location within a grid is
governed by a biased random walk (3). Its traverse from one space to another is governed by its
location, its assigned physicochemical properties (here we consider only lipophilicity, degree of
ionization, and molecular size), and environmental conditions, including the concentration
gradient, pH, etc. Molecular weight (MW) is used to determine the in silico diffusion coefficient

(Dists): Digrg < 1/(MW). We assume n = 1 in the BILAYER (G2 and G4) and 0.6 elsewhere (17,

18). Entering the BILAYER from an aqueous space is controlled by an event probability that is
influenced by the above factors. The probability of exiting that space at the next time step is
arbitrarily set to 0.5.

[ TableI ]

Membrane transporters and metabolic enzymes are modeled as immobile objects. Objects
called PGP represent Pgp. Objects called CYP represent CYP3A4, the only metabolic enzyme
considered in this study. Both PGP and CYP can be assigned randomly or to specific locations
within the G2 and G3 spaces, respectively. Each can only interact with a DRUG located at its
active site. The number of PGP and CYP can be specified separately in advance or drawn
separately at random from a uniform distribution having specified minimum and maximum
values. PGP is only parameterized to transport DRUG out of the simulated cell interior to G1.
Because there may be several transporters within the area of cell membrane represented by one
G2 location, each PGP may represent more than one transporter. Both PGP and CYP have a free
state and three occupied states, as diagrammed in Fig. 2. If a DRUG is located adjacently to the
active site of a free PGP or CYP, binding can occur with a probability that depends on the value of
their solute affinity parameters (cyp- and pgpSoluteAffinity in Table I). Those parameter values,
together with the reactivity of the complexes, are conflated in silico into the probability of DRUG
binding. A larger parameter value corresponds to a smaller value of K,, in Michaelis-Menten
models (3). An occupied PGP holds its DRUG for three time steps, corresponding to the illustrated
state changes in Fig. 2, and then releases it into the simulated apical space, G/. In simulations of
intracellular metabolism, three time steps after a DRUG is bound to CYP, its METABOLITE is placed
in a location adjacent to the now free CYP. Thereafter, the METABOLITE randomly moves within
and among spaces, exactly as would its parent. For simplicity, METABOLITES are given the same
physicochemical properties as their parents. However, when it is required, it is easy to change
parameters to individualize METABOLITE properties. For example, in one experiment the
METABOLITE can have the same PGP and CYP affinity values as the parent. In another, those
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values can be set to zero. Additional objects representing networks that control the level of
expression of enzymes and transporters, or other cellular components such as other transporters,
lysosomes, and genes, can be specified and added when needed.

For each stochastic event, a random number is drawn from a standard uniform
distribution and compared with a pre-specified or calculated event probability. Events occur
only when the random number is less than or equal to the parameterized event probability.

[ Figure 2 ]

In Silico Experiments and Data Analysis

In all experiments, the pH in G/, G3, and G5 is equal to 7.4. At the start of a simulation
2,000 DRUG objects are assigned to random locations in the donor space. Because of the
stochastic nature of events within the same simulation, repeated measurements of a behavior of
interest will differ between experiments (between model runs). However, for repeat Monte Carlo
simulations (e.g. 50), the behaviors discussed herein have reasonably symmetric frequency
distributions; the central limit theorem is applicable.

In Table II the ISTS parameters are grouped into three categories: 1) the simulated transwell
system; 2) the physicochemical and biochemical properties assigned to DRUGS; and 3) the in
silico experimental conditions. An ISTS is designed to study and document DRUG transport from
either direction. When G/ is designated as the donor compartment, apical-to-basolateral (A—B)
transport is simulated. When G5 is designated as the donor compartment, B—A transport is
simulated. Experiments are run for a certain period under a sink condition; e.g. for studies in
which only initial flux rates were measured, the period is when no more than 10% of of the dose
has transported from the donor to the receiver space. The initial flux rates are calculated by
dividing the amount of DRUGS in the receiving space by elapsed time steps (dQ/ds). The in silico
apparent permeation coefficient is Pj¢p.¢ = (dQ/ds)/(axc,), where a is the area of the first

membrane space contacted (G2 or G4), and ¢, is the initial dose of DRUGS. Extraction ratio (ER),
which is a measurement of the extent of metabolism relative to the amount of transported drugs,
is calculated as in Cummins et al. (19):

ER = ¥ METABOLITES 3] grids (S METABOLITES 4] griqs + X ParentsG 3 445)-

[ TableII ]

PGP and CYP interact only with DRUGS or METABOLITES that they recognize as being
substrates. Each DRUG or METABOLITE carries a label that designates it as a substrate or not. To
inhibit the interaction of PGP or CYP with a substrate, that label recognition is blocked for the
duration of the study; the result is complete inhibition. By changing PGP and CYP densities, their
binding affinities for the DRUG (and METABOLITE) under study, and/or each DRUG’s
corresponding physicochemical properties, we are able to study the combined influences of efflux
and METABOLISM for a wide variety of simulated compounds.



RESULTS

The Influence of PGP and CYP on Single Substrate DRUGS

The passive transport behaviors of DRUG I have been described in detail (3); I served as the
control in this study. To study the influence of PGP alone, we made two virtual analogs—II and
IIT—that are exclusive substrates of PGP, having pgpSoluteAffinity values of 0.5 and 0.75,
respectively. The ISTS contained 10 or 30 PGPs in G2. Because I is not a PGP substrate, it did
not exhibit any significant difference between A—B and B—A transport. For IT and III, their
B—A transport always exceeded that of A—B because of the added influence of unidirectional
efflux driven by PGP (Fig. 3A). The magnitude of the effect increased as both PGP-DRUG affinity
and PGP density in G2 increased. At time step 400, the highest intracellular DRUG levels were
observed for I, and were indistinguishable for both transport directions (Fig. 3B). When efflux
was involved, the intracellular levels decreased for both transport directions, indicating the
pivotal role of active efflux in maintaining lower intracellular levels of substrates.

To study the influence of CYP alone, two new analogs of I were created. As listed in Table I,
V and IX have cypSoluteAffinity values of 0.5 and 0.75, respectively, but no PGP affinity. The
A—B transport simulations were conducted in an ISTS limited to only 20 or 50 CYPS in G3 and
were run for 400 time steps. I, which was not recognized by CYP, exhibited more transport and
had the highest intracellular DRUG levels. As CYP-DRUG affinity and the number of CYP
increased, fewer DRUGS were transported to G5, and a significant decrease in intracellular DRUG
levels was observed (Fig. 4A). Extraction ratio (ER) values increased as CYP-DRUG affinity
and/or the number of CYP increased, because of increased METABOLISM and decreased transport
to the G3 and receiver spaces (Fig. 4B). Together the data show, as expected, that metabolism
reduced DRUG transport and intracellular DRUG levels.

[ Figure 3 and 4 ]

The Influence of PGP and CYP on Dual Substrate DRUGS

To study the combined influence of PGP and CYP on transport behavior, we used VI, VIII,
XIV, and XVII. Each is a dual substrate having the properties listed in Table I. Each ISTS
contained 20 CYPS and 30 PGPS. To isolate the consequences of PGP and CYP inhibition, A—B
and B—A control studies were conducted for all four DRUGS. Protocols were repeated to study
three different treatments: complete inhibition of PGP, complete inhibition of CYP, and complete
inhibition of both. All other factors and parameter values were kept constant.

VI and XVII have identical PGP and CYP affinities, but different physicochemical properties.
Net B—A transport exceeded A—B transport for both DRUGS, but as seen in Fig. 5A and 5C, the
difference is more apparent for XVII because of its physicochemical properties. This polarized
transport was completely abolished by inhibition of PGP: the result was decreased B—A and
increased A—B transport relative to the control values. When PGP and CYP were both inhibited,
A—B transport increased even further due to the additional effect of blocked METABOLISM. The
simulated intracellular and basolateral levels of the two DRUGS at time step 400 (for VI) or 1,000
(for XVII) were significantly increased relative to the control values (Fig. 5B and 5D). Because
of the increased G3 DRUG levels caused by PGP inhibition, the levels of total METABOLITES also
increased. The G3 levels, but not the G5 levels of the two DRUGS, were affected by CYP
inhibition.

[ Figures 5 ]



Table III lists the efflux ratios for VI and XVII along with corresponding values for VIII and
XIV. The data show how much ER values changed due to PGP inhibition. Compared to VI,
XVII had a larger efflux ratio because of its physicochemical properties. VIII had a larger efflux
ratio due to its stronger interaction with PGP. Inhibition of PGP decreased the ER of all four
DRUGS. XVII had the largest decrease (14.3%) and VI had the smallest (3.5%). XIV had a
greater affinity for CYP than did VI, and yet they had the same PGP-DRUG affinity and
physicochemical properties. Consequently, they had a similar efflux ratio. However, inhibition
of PGP decreased the ER of XIV (11%) more than it did the ER of VI (3.5%).

[ Table III ]

Synergism may occur between PGP and CYP in retarding the ABSORPTION of the dual
substrate DRUGS studied. Synergism is confirmed when the additional amount ABSORBED when
both PGP and CYP are inhibited, relative to control values (no inhibition), is greater than the sum
of additional amounts ABSORBED after separately inhibiting PGP and CYP. We made such
measurements for several of the experiments described above after 400 and 800 time steps. In
most cases, when the numbers of PGP and CYP were low (e.g., 30 and 20 each or less) there was
no evidence of synergism with a short absorption interval. For larger densities of PGP and CYP
(e.g., 50 each) and longer study intervals, clear evidence of synergism was obtained for the dual
substrates in Table I. Results for VI and XI are shown in Table IV.

[ Table IV ]

Studies of PGP and CYP Relative Location

To test our first hypothesis, we constructed two different groups of ISTSs, one control, and
the other experimental. We used each to conduct experiments on I-XVI. We specified that each
ISTS contain 50 PGPS and 50 CYPS. In the control ISTSs, the PGPS and CYPS were randomly
assigned to locations within their corresponding spaces, G2 and G3 respectively, so that there was
no correlation between their relative locations. For the experimental ISTSs, the PGPS (or CYPS)
were first randomly assigned to locations in their space, and their grid coordinates were recorded.
Next, the CYPS (or PGPS) were placed at matching coordinates within their space. Viewed from
G1 each PGP is “above” a CYP.

The influences of the relative positioning of PGP and CYP on measured flux rates and ER
values are shown in Fig. 6 and 7, respectively. The data are grouped by CYP-DRUG affinity value,
and within each set there are mean data for four different PGP-DRUG affinity values. For the dual
substrates, matched PGP-CYP positioning had no significant effect on B—A flux rates, but it did
have a modest but significant effect on A—B flux rates (Fig. 6). For the PGP substrates the B—~A
flux rates were clearly larger than those for A—B, and the magnitude of the difference increased
with increasing PGP-DRUG affinity. For the dual substrates, there was a clear influence of PGP-
CYP relative positioning on measured ER values (Fig. 7) for each of the A—B experiments. That
influence was less dramatic for the B—A experiments. In fact, for X, XIV and XV, differences
between experimental and control B—A experiments were not statistically significant. With
increasing PGP-DRUG affinity, ER decreased in B—A transport for both control and experimental
groups. ER values for A—B transport were different. ER increased within the control group, but
decreased within the experimental group. In other words, for dual substrate DRUGS in an ISTS
where the locations of PGP and CYP are spatially aligned, inhibition of PGP increased ER for both
B—A and A—B transport. It is noteworthy that no in vitro experiments have reported such a
phenomena.

[ Figures 6 and 7 ]



Studies of Competitive Inhibition by METABOLITES

To test our second hypothesis, we conducted two sets of experiments. Both used I-XVI and
ISTSs having independent, random placement of PGP and CYP. Within each set, each
METABOLITE was assumed to have the same CYP affinity as its parent. For the first set of
experiments METABOLITE affinity for PGP was identical to that of its parent. For the second set of
experiments PGP-METABOLITE affinity was zero. For A—B and B—A simulations we compared
the consequences of the two mechanisms on initial flux rate measures and ER values. We used
analysis of variance (ANOVA) to test if there was a statistically significant difference between
the two mechanisms. If so, it would indicate that within the first set of experiments, there was
evidence of competitive inhibition being a significant factor.

Tables V and VI display the results of the ANOVA analysis. The differences between DRUGS
are sufficient to account for all of the variance in initial flux rates and ER values for both A—B
and B—A transport (p-values for the DRUG term = 0). There was no statistically significant
evidence for a contribution from either of the two mechanisms. Nor was there any significant
evidence for a contribution from the interaction term (a specific combination between DRUG and
one of the mechanisms). For the conditions studied there was no experimental evidence of
interference through any form of competitive inhibition by METABOLITES with the transport
behaviors of the parent drug. To obtain evidence of competitive inhibition by METABOLITES,
more extreme conditions and properties will be required.

[ Table V ]
[ Table VI ]

DISCUSSION

Most of the models used in pharmaceutical research fall into three broad categories:
constructed synthetic wetlab models, induced equation-based models, and statistical models.
Here we are concerned with the first two. In vitro wetlab models are the mainstay of biomedical
research. They are synthetic models where some of the building blocks are laboratory items and
others are living parts. The Caco-2 transwell system is an example. Equation-based models are
typically arrived at using the inductive method of modeling (20). They are usually built by
analyzing data, creating a mapping between the envisioned structure of the system and
components of the data, and then representing those data components with mathematical
equations. These equations are then executed and validated against the data. Validation often
involves fitting the equations to the data. Examples include simple Michaelis-Menten models,
oral drug absorption models (2), and physiologically based toxicokinetic models (21). This
modeling method stays very close to the data and, when successful, provides models that
extrapolate beyond the original data, making them usable for prediction. However, the detail that
is abstracted away when an equation is induced is where much of the heuristic value lies. That
detail describes the mechanism by which the data were generated, whereas the mathematics only
describes the abstracted properties of the mechanisms that are reflected in the data. To address
questions about those details and how they influence system behavior we need to have a model
that can include more detail, an analog of hypothesized or plausible mechanisms. To do that in
silico we need to follow the synthetic modeling method (20).

There is a huge gap between experimental wetlab models and traditional computational
models. The gap sits on the continuum between experiment and theory. To develop exploitable
insight into the functioning of complex biological systems we need to begin bridging this gap. To
do that, we need new methods beyond those described by Noble (22) and Kitano (23). From
these new methods will come new classes of models that make computational biology more
experimental and wetlab research more computational. The ISTSs described herein are examples
of new methods to help narrow that gap. They are discrete event, discrete space, discrete time
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models (14, 15) in which object-oriented software components are plugged together and operated
in ways that represent the mechanisms that are believed to influence transport across the intestine
and across the cell monolayer within transwell systems. The results presented above show that
ISTSs can be used to experimentally explore mechanistic questions and hypotheses involving the
overlapping substrate specificities of CYP3A4 and Pgp. Such issues can be challenging to
address using the available in vitro models, and difficult to untangle from data using traditional
equation-based models.

For compounds that are dual substrates of CYP3A4 and Pgp, in vitro experiments have
shown that pretreatment with Pgp inhibitors results in a reduction in ER values (24, 25). The
explanations have focused on intracellular drug levels. For example, absent Pgp inhibition, efflux
of drug followed by reabsorption effectively prolongs the intracellular access of drug to the
metabolizing enzymes. Pgp inhibition then blocks that prolonged access causing reduced ER
values. We tested that idea and others by exploring PGP—DRUG—CYP interactions in detail. The
results were similar to those observed in vitro (25-28). We measured the transport of dual
substrates while inhibiting PGP. Relative to control values, total METABOLITES increased, as did
the levels of DRUGS in CELLS and in the receiver (G5). ER values decreased because the G3 and
G5 DRUG levels increased more relative to those of total METABOLITES. For example, in Figure
5D, by inhibiting PGP, the sum of the G2, G3, G4 and G5 levels of XVII increased from 109.9 to
158.4 (a 44% increase); the total amount of metabolites went from 39.7 to 48.7 (a 23% increase).
Consequently, ER values decreased 12%, from 0.266 to 0.235. In the absence of PGP inhibition,
the lower G3 DRUG level caused fewer METABOLITES to be formed. However, because the net
amount of DRUG transported into CELLS and to the receiver was even lower, the calculated ER
seemed large. Inhibiting PGP decreased the ratio of total METABOLITES to the amount of
transported DRUG, thus decreasing ER. Exploratory ISTS simulation helps bring clarity to such
relationships.

We used ISTSs to explore the consequences of aligning, or not, the spatial locations of PGP
and CYP within their respective spaces relative to the direction of transport. The in vitro
experimental results are consistent with an unaligned, uncorrelated spatial arrangement, not with
spatial alignment. In the in silico A—B experiments that used dual substrates, METABOLISM and
efflux decreased the probability that a DRUG would arrive in the receiver space within some
interval. When PGP and CYP were aligned in their respective X-Y planes, interaction with one
effectively impeded interaction with the other. Consequently, their combined barrier effect was
decreased relative to what it would have been with any other spatial arrangement. When a DRUG
was pumped out of the CELL to G/, it could diffuse around within G/ before moving back into
G3. When PGP and CYP were aligned, it was unlikely that a DRUG would re-enter G3 close to its
exit site immediately after being pumped out. That likelihood would decrease further if we had
simulated rapid mixing or transit in G/. The effective role of PGP in the spatial alignment case
was to move DRUGS away from the site of METABOLISM, thus decreasing ER. For B—A, only
metabolism decreased DRUG transport to the receiver space. Alignment, or lack thereof, had no
effect on flux rate. There was, however, an alignment effect on B—A ER values when CYP-
DRUG affinity was comparable to, or relatively smaller than, that for PGP-DRUG (VI, VII, VIII,
XI, XII, XVI). A higher PGP affinity caused DRUGS to be pumped out of the CELLS before they
could be metabolized. Those DRUGS had a lower ER than their counterparts in the control group,
for which there was no alignment.

We did not find any statistically significant evidence of competitive inhibitory effects by
METABOLITES on DRUGS’ transport and METABOLISM. The interaction of PGP with any substrate
used here can be described using simple Michaelis-Menten kinetics (3). Consequently, for
METABOLITES that are Pgp substrates, inhibition will occur when METABOLITE levels are large
enough. That turned out not to be the case here. The occasional inhibition that did occur was
insignificant. ER was a contributing factor; those values tended to be small (< 0.5) for all
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studies. Furthermore, because all experiments were conducted under sink conditions, the number
of METABOLITES formed was always small relative to the initial amount of DRUG. More extreme
conditions will be needed to explore METABOLITE inhibition.

Because of the synthetic nature of ISTSs, it was relatively easy, using selective inhibition of
dual substrate DRUGS, to directly measure the separate and combined influences of PGP and CYP
on the fraction of DRUG absorbed (transported). We observed that by so doing we could get a
direct measure of synergism, which can be difficult to obtain directly form some other types of
models, including in vitro systems. Table IV lists two cases where significant synergism was
observed. More synergy can be observed given an ISTS with relatively high densities of PGP and
CYP, substrates that have larger DRUG-PROTEIN affinities, and a longer duration of the experiment
(data not shown).

One of our goals is to create extensible, validated ISTSs that are suitable for experimentation.
We anticipate that such devices will be useful for exploring and addressing mechanistic questions
and hypotheses that are difficult or impossible to address using either traditional wetlab or
mathematical modeling methods. To achieve that objective the devices and their components
need to be modular, as are the current ISTSs. They are purposefully abstract. Only those cellular
components, features, and functions that were deemed essential to demonstrate feasibility or to
address the questions of interest were included. Having demonstrated feasibility, we can then
focus on a broad array of model uses and on iteratively improving these devices so that they
become more reliable and useful research analogs of transwell and other systems.

ISTSs will be helpful in solving scientific problems related to transport and metabolism in
vitro. For example, Mouly et al. (25) observed that more of a metabolite of Saquinavir (referred
to as M7), the first of the HIV protease inhibitors to reach the market, was produced after
basolateral dosing, than after apical dosing in a transwell system. They offer several plausible
explanations. Given the modular nature of ISTSs, it is relatively straightforward to add
alternative plausible mechanisms into different ISTSs that are constructed and parameterized to
represent Saquinavir transport and metabolism. By so doing one can conduct experiments to
contrast the influences of the different mechanisms on B—~A and A—B METABOLISM. As a
consequence of this competition between alternative mechanisms, one or more will survive based
on their ability to generate data that is most similar to the referent in vitro data. This will allow
for the design of targeted in vitro experiments to test the selected mechanisms.

To achieve the above vision it will be necessary to flexibly adjust the amount of cellular
functionality and detail that an ISTS can represent. Ideally, such detail will be added only when
it is needed to account for specific in vitro observations. Here are three examples. Additional
spaces may be needed between G/ and G2 to represent an “unstirred water layer” or to enable
simulation of direct interactions between the compound of interest and the exterior cell membrane
components. We can also anticipate a need to represent two or more different transporters by
including objects similar to PGP within G2 or G4. For example, objects representing apical
uptake transporters, such as PEPT1 (peptide uptake transporter 1) and OCTN2 (Organic Cation
Transporter 2), or additional efflux transporters, such as MRP2 (also known as cMOAT, an
organic anion transporter) and BCRP (Breast Cancer Resistance Protein) can become G2
components. Objects representing basolateral uptake transporters, such as OCT1 (Organic Cation
Transporter 1), and efflux transporters, such as MRP3 (Multi-Drug Related Protein 3) and MCT1
(Monocarboxylate Transporter 1), can become G4 components. We also anticipate the need to
represent more detail associated with different types of metabolism, along with issues of
induction and inhibition. Studies need not be limited to just one DRUG. Questions related to drug
interactions can be explored. Such additional functionality and detail can be added or removed
without compromising the remaining ISTS functionality.

To account for a mechanism whereby compounds are believed to interact with specific
subcellular components—lysosomes, DNA, RNA, etc.—it may be necessary to add new objects
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to G3 or replace that space with additional fine-grained spaces. An object representing CYP3A4
at one G3 location can be replaced by an object acting as a container (29). The container may, for
example, provide a virtual space occupied by representations of CYP3A4 along with
representations of other metabolic enzymes. For example it may contain representations of Phase
I enzymes, such as MAOs (the Monoamine Oxidase superfamily), and Phase II enzymes, such as
UGTs (the UDP-Glucuronosyl Transferase superfamily) and members of the Sulfotransferase
superfamily. Again, because of the modular, synthetic nature of ISTSs, additions, replacements,
and substitutions can be made relatively easily and without compromising the functionality built
into the other parts of the model. Replacing G3 with two or more different grids (of the same
size) can be done so that it will not interfere with the functionality elsewhere in the ISTS; such
replacements can be done while a simulation is running, for example to simulate the
consequences of some treatment effect or a therapeutic intervention. After validation against in
vitro data, as was done for alfentanil and digoxin (3), the ISTS and its components can be used in
new ways. For example, the cellular ISTS component can be removed for reuse as a module in a
larger model. Assume that we have a physiologically based synthetic model that can represent
gastro-intestinal absorption, and that it has been designed so that a connected array of similar
modules represents the intestinal epithelium. Copies of a validated ISTS module that has
compatible interfaces can be plugged into that array. Following parameterization of the other
components of the gastro-intestinal model, simulations would anticipate the absorption properties
of the compounds for which the ISTS had been validated.

Flexibility and adaptability are basic characteristics of biological systems of all types.
However, it is challenging to achieve such characteristics using continuous state, equation-based
models. That distinction is one of several that make it attractive to use this new class of models
to represent and study biological systems, and as adjutants to make costly wetlab or clinical
experiments more effective. These distinctions are important. The components of
multicompartment absorption models are mathematical compressions of the phenomena that they
model. The inductive method on which they are based explicitly uses the observed phenomena
(the data) as its input whereas the synthetic method begins with proposed building blocks and the
relations between them (14, 15). The inductive method starts with the phenomena—the amount
absorbed and metabolized after some time, for example—and works backward to the generators
in an attempt to discover an inverse mapping from range to domain. The synthetic method, in
contrast, works forward from domain (building blocks) to range (behavior). Its constraints and
criteria sit primarily in the domain.

Induced models are ideally suited for exploiting discovered characteristics whereas synthetic
models are ideally suited for exploring the consequences of assembled components. The
inductive model will provide a better fit to the data and greater precision in extrapolating that data
under the same experimental conditions. The synthetic model will provide a hypothesis for the
mechanisms that are believed to generate the data. Through its design and the stochastic nature
of its component interactions, it also provides an important representation of uncertainty. An
inductive model allows one to falsify claims about the data (relative to a given model). The
synthetic model allows one to falsify claims about the mechanisms. The fundamental difficulty
with the synthetic method, as applied here, is establishing requirements for building an analog
that functions acceptably like an intestine, a monolayer of epithelial cells, or some other system.
Synthetic modeling requires knowledge of the function of the referent, of plausible mechanisms
for that function, and of relevant observables by which the analog and the referent will be
measured and compared. Today, in pharmaceutical research, those requirements can be met.
Building the models requires rigorous methods and attention to detail. It is too early in the
development of this new class of models, however, to be able to know which specific in silico
methods and procedures will prove to be most useful and effective.

In summary, we have provided an example of synthetic modeling and simulation applied to a
pharmaceutically relevant domain: the transport of compounds across complex cellular barriers
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that are capable of diverting it, metabolizing it, and directly responding to it. The system used are
analogs of the CYP3A4-transfected Caco-2 transwell system. Experiments conducted using these
ISTSs convincingly demonstrate the feasibility and suggest that they could be further developed
in order to become stand-alone experimental systems that, within a research and development
environment, will complement their in vitro counterparts. We simulated and explored the
combined influences of apical efflux by Pgp and metabolism by CYP3A4 on transport and ER for
series of virtual compounds having different degrees of overlapping affinities for Pgp and
CYP3A4. We found that for dual substrates, system level transport properties were different with
and without the spatial alignment of those components. In some cases, the efflux and metabolism
influences were simply additive. However, for greater component density and for longer
experiments, significant synergy was observed.
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Table I. Binding affinities of CYP and PGP for the hypothetical drugs'

Tables

DRUG ID  cypSoluteAffinity 2 pgpSoluteAffinity > DrucID cypSoluteAffinity 2 pgpSoluteAffinity 2
I 0 0 IX 0.75 0
II 0 0.5 X 0.75 0.5
I 0 0.75 XI 0.75 0.75
v 0 1.0 XII 0.75 1.0
A\ 0.5 0 XIII 1.0 0
VI 0.5 0.5 X1V 1.0 0.5
Vi 0.5 0.75 XV 1.0 0.75
VIII 0.5 1.0 XVI 1.0 1.0
Xvir’ 0.5 0.5

"Each DRUG is a weak base with pK, = 6.5. 2 Binding is a probabilistic event; if the affinity value is high,
e.g., 0.75, then when substrate is next to the active site, there is a 75% chance (on average) that it will be
bound at the next time step. * X VII has MW of 300 Daltons and logP of 1.8; all other DRUGS have MW of
150 Daltons and logP of 2.0

Table II. Parameters' of the ISTS

Category Name Description Values
" worldXSize The X x Y dimension of GI — G5 100 x 100>
In silico worldYSize
Transwell tightJunctions Tight junction area as % MEMBRANE space area 0.1
System minPgps Minimum PGP density 10
maxPgps Maximum PGP density 50
minCyps Minimum CYP density 20
maxCyps Maximum CYP density 50
DRrUG ionDiffusion Permeation due to ionized form of DRUG (%) 0~1
Properties substrateOfPgp DRUG is a substrate of PGP or not TorF
pgpSoluteAffinity DRUG-PGP binding affinity 0~1.0
substrateOfCyp DRUG is a substrate of CYP or not TorF
cypSoluteAffinity DRUG—CYP binding affinity 0~1.0
Exp. numSolutes Initial concentration in donor compartment 2000
Conditions a2bDirection Donor is G1 (otherwise, G5) TorF

" The ISTS contains additional parameters (3) that were not adjusted during the experiments discussed herein or in
related exploratory experiments. Examples include parameters to adjust molecular weight, pKj, logarithm of the
(DRUG’S) partition coefficient, pH in G/, G3, and G5. * This grid size was adequate for the needs of this study; it can
be changed easily thereby altering system resolution.
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Table III. Comparison of the efflux ratios' and the influence of inhibition of PGP on the extent of metabolism for four
hypothetical DRUGS

Drug Efflux ratio ER (S.D.)? A
B—A/A—B DRUG alone Inhibit PGP )
VI 1.423 0.170 (0.017)  0.164 (0.015) 35
XVII 2.584 0.454 (0.028)  0.389 (0.026) 14.3
VIII 1.602 0.179 (0.014)  0.164 (0.015) 8.4
X1V 1.446 0.242 (0.030)  0.216 (0.025) 11
"Measured under a sink condition. ? Data are shown as mean (S.D.) from 10 Monte Carlo
simulations

Table IV. The combined influences of CYP and PGP on the simulated absorption (A—B transport) of DRUGS VI and XI

ISTS (20 cyps, 30 PGPs) ISTS (50 cyps, 50 PGPs)

Ab %' A (%)* Ab % A (%)
Control (VI @ 800) 8.23 6.24

Inhibit PGP 9.99 1.76 8.16 1.92
Inhibit cYp 9.66 1.43 8.36 2.12
Expected (E) upon inhibition of both® 11.42 3.19 10.28 4.04
Observed (O) upon inhibition of both 11.30 3.07 11.30 5.06
Synergism: O/E (VI @ 800) 0.99 0.96 1.10 1.25
Synergism: O/E (XI @ 800) * 1.04 1.15 1.21 1.53
Synergism: O/E (XI @ 400) * 0.96 0.83 1.03 1.09

" Percent ABSORBED (in G35 at time step 800, for VI and XI, and at time step 400 for XI); data are shown as mean
from 10 Monte Carlo simulations; 2Additional ABSORPTION relative to control values; 3Assuming effects are
additive. * Calculated as for VL.

Table V. ANOVA' table for testing the competitive inhibitory effect of METABOLITES on the DRUG flux rate (sink conditions)

A—B B—A
DF Sum of Sq. Mean Sq. F-value Pr(F) IDF  SumofSq. MeanSq. F-value Pr(F)
Hypothetical DRUGS 15 0.45 0.030 23828 0 15 1.07 0.071 243.62 0
Mechanism 1 5.90E-05 5.90E-05 0.47 049 |1 6.28E-06 6.28E-06  0.021 0.88
Two terms interaction |15 9.44E-04 6.29E-05  0.50 0.94 |15 0.0013 8.61E-05 0.29 0.99
Residuals 288  0.036 1.26E-04 288  0.084 2.92E-04

' The ANOVA model is Flux Rate = DRUG + Mechanism + (DRUG x Mechanism) + residual.

Table VI. ANOVA' table for testing the competitive inhibitory effect of METABOLITES on the DRUG ER (sink conditions)

A—B B—A
DF  SumofSq. MeanSq. F-value Pr(F)| DF  SumofSq. MeanSq. F-value Pr(F)
Hypothetical DRUGS 15 12.57 0.84 1332.6 0 15 7.09 0.47 92491 0
Mechanism 1 2.47E-04 247E-04 039 053 1 3.07E-04 3.07E-04 0.60 0.44
Two terms interaction | 15 0.0068 4.55E-04 072 0.76 | 15 0.0096 6.39E-04 125 0.23
Residuals 288 0.18 6.29E-04 288 0.15 5.11E-04

' The ANOVA model is ER = DRUG + Mechanism + (DRUG x Mechanism) + residual.
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Fig. 1. In vitro and in silico experimental system to study intestinal drug transport and metabolism.
CYP3A4-transfected Caco-2 in vitro transwell system: A: apical, B: basolateral compartment; C: epithelial
cell monolayer; F: filter; V: a vertical column section through the transwell system. In silico transwell
system (ISTS): GI-G5: 2D grid spaces representing the indicated components of the transwell system. The
different shading of the G3 grid locations illustrates that locations in any of the five spaces can have
different properties (see the text for additional detail).
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Fig. 2. A flowchart describing the ISTS efflux transport and METABOLISM processes. D: a DRUG object; P:
a PGP object; C: a CYP object. The algorithm is designed according to the schematics in the inserts. Inserts:
gray objects represent DRUG; white objects represent METABOLITE; notched and open white boxes: different
PGP states; notched and diamond-shaped gray boxes: different CYP states. Binding between P or C, and D is
probabilistic and is controlled by the simulation parameters pgpSoluteAffinity, cypSoluteAffinity
respectively.
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Fig. 3. Effect of PGP on flux rates and simulated intracellular DRUG levels for I, II, and III. (A) Simulated
transepithelial flux rate of I, I, and III under a sink condition; A—B transport measures serve as controls.
(B) Dark gray bars: simulated intracellular DRUG levels at time step 400 following dosing into GI; light
gray bars: simulated intracellular DRUG levels at time step 400 following dosing into G35; the data from I
(not PGP substrate) served as controls. =: difference between experimental and control groups is significant
(p < 0.05); ==: difference between experimental and control groups is highly significant (p < 0.01); the
Welch modified two-sample #-test was used. Data are the mean of 10 Monte Carlo simulations; error bars:
=S.D.
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Fig. 4. Effect of CYP on simulated A—B transepithelial transport and the extent of METABOLISM for I, V,
and IX. (A) Amounts of DRUG found in simulated cells and transported to the simulated basolateral
compartment (G5) were measured at time step 400. The data from I (not CYP substrate) served as controls.
(B) Simulated CYP-mediated metabolism, as measured by the formation of METABOLITES and the calculated
ER. Sample size, *, and **: as in Fig. 3.
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Fig. 5. The influence of PGP and CYP (and their inhibition) on simulated transcellular transport (A and C)
and formation of METABOLITES (B and D) for dual substrates VI (A and B at time step 400) and XVII (C
and D at time step 1000; because of the physicochemical properties of XVII, a longer study period was
required to get amounts similar to those for VI). (A, C) Each line is composed of mean measurements
taken at each time step. Symbols are added to differentiate the six curves. Open symbols: A—B transport;
closed symbols: B—A transport; squares: controls (no inhibition of either PGP or CYP); triangles: complete
inhibition of PGP; circles: complete inhibition of PGP and CYP. Inserts are two enlarged illustrations for a
short time interval. (B, D) Gray bars: simulated cellular DRUG levels; open bars: G5 (simulated basolateral)
DRUG levels; dark bars: total METABOLITES in all spaces. Sample size, *, and **: as in Fig. 3.
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Fig. 6. The influence of the relative positioning of PGP and CYP on flux rates of I-XVI. Each set of
experiments used the same ISTS (50 PGP, 50 CYP). Experiments are clustered into four groups based on
CYP-DRUG affinity. Within each group, the inserted scale shows PGP-DRUG affinity. Open circles: mean of
control experiments (the locations of PGP and CYP within G2 and G3, respectively, are uncorrelated); closed
squares: mean of experimental group (the locations of PGP and CYP within G2 and G3 are matched); dashed
line: A—B transport; solid line B—A transport. Sample size, *, and **: as in Fig. 3.
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Fig. 7. The influence of the relative positioning of PGP and CYP on ER of I-XVI. The representations and
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