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ABSTRACT

We present the basics of a modeling method, FURM
(Functional Unit Representation Method) that attempts to
address a fundamental difference in the practice of bio-
logical modeling:  that of creating experimental, con-
structive analogs versus inductive, mathematical data
fitting.  Further, we briefly present two modeling frame-
works built according to FURM as concrete examples of
how the method can be used.
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1. INTRODUCTION

In this paper we make the case that, in order to make real
progress in understanding how molecular and physio-
logyical components work together as robust systems, we
need to engage in the hard work of constructing and
experimenting with in silico models that can, through
simulation, exhibit the system-level behaviors of interest.
Before developing our case, however, we need to care-
fully revisit the concepts of modeling and simulation.

The etymology of the word “model” generally indicates
that it is closely related to “measure.”  Taken in that
sense, a model can be thought of as a device, an engineer-
ed device, against which to measure an artifact or phe-
nomenon.  What, then, are we doing when we model
some process, artifact, or system?  What are we trying to
achieve?  How will the model be compared to the
referent?  What aspects of the referent are observable?
Which of the observables are quantifiable and which are
qualitative?  The answers come directly from the contexts
in which the engineered device will be used.  The usage
tells us what the model is good for, what it must do,
whom it must serve, for what experiments it will be used,
how long it must be useful, etc.

Closely examining the usage elicits the requirements and
desirable characteristics of the device.  Often, however, it
is very difficult to delineate the salient aspects of biolog-
ical systems, because they have a dense continuum of
behaviors and situations in which they are relevant1. This
forces modelers to choose, somewhat arbitrarily, a small

subset of the potential characteristics their model might
have.  One consequence is that the modeler is now open
to the rhetorical fallacy of petitio principii, 1which in
modeling becomes the fallacy of “inscription error” [17].

Given that any modeling effort may be faced with a huge
space of relevant characteristics, how does a modeler
choose which are salient?  The answer depends on the
core context in which the model will be used.  That con-
text provides the impetus for model development, sets its
expected lifetime, and defines the actors involved in its
development and usage.  A key property of the core con-
text lies in the modeler's ability to collapse it into a detail-
ed enough prescription for what the model must do.  This
reduction of the context is particular to the modeler,
implying that the model is developed through subjective
interpretation of the context.  Hence, modeling is a sub-
jective enterprise.  Modeling is epistemological and
cognitive.  It is not ontological.

There are basically two categories of models as they are
used in biology laid out in Fig 1.  We place model organ-
isms, such as specialized strains of mice, in the upper
right corner of the sketch, and mathematical or statistical
models in the lower left corner.  The sketch illustrates a
gap between the experimental models used to clarify or
test hypotheses and computational models, which are
designed to closely fit or precisely characterize their
referents.  This gap sits on a continuum between the two
extremes of experiment and theory, where the former is
more exploratory, aimed at discovering various distinct
characteristics, and the latter is more exploitative, aimed
at precisely honing specific characteristics.

To make the desired progress in understanding biological
systems we need a method that can fill this gap and pro-
                                                            
1In fact, there is a well-known metamathematics theorem that
formalizes this practical difficulty, Tarski's Theorem, which
states that “assuming that the class of all provable sentences of
the metatheory is consistent, it is impossible to construct an ad-
equate definition of truth in the sense of convention T on the
basis of the metatheory” [19].  Convention T is simply a rigor-
ous definition of truth.  This theorem, with some additional
consideration of the universality requirement for Turing mach-
ines, leads von Neumann to claim that, for particular types of
systems (including biological systems), their description will be
indefinitely long [22].
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duce new classes of models.  The methodological consid-
erations below attempt to directly address the issues faced
when trying to work within this gap, making computa-
tional models more experimental and vice versa, making
experimental models more exploitative.

2. CONSTRUCTION METHODS FOR
EXPLORATION AND EXPLOITATION

The usage contexts for models or model types along the
exploration-exploitation continuum are distinct, but not
mutually exclusive.  In fact, they are vague and open to
interpretation.  The distinction relevant for this discussion
is the degree to which the modeling device is separate
from the particularities of the modeler and, hence, the
particular intent of the model when it is created.

In the case where a model is induced by abstracting
characteristics from a collection of objects, data sets in
this context, that model amounts to a membership func-
tion that defines a class of objects.  That membership
function can be applied to any particular object to deter-
mine whether it is a member of that class.  This is the
inductive method [18].  It ties the model, inextricably, to
the semantics of membership functions.  Objects that are
presented are interpreted in accordance with that func-
tion.  In contrast, when a modeling device is assembled
out of pre-existing components the resulting device is not
necessarily a coherent membership function but a post-

hoc encoding of the various functions of its constituent
components.  This is the synthetic method2 [18].

It is instructive to contrast the two methods.  In most
cases, experimental models are synthetic and computa-
tional models are inductive.  The essential difference is
that the inductive method explicitly uses the observed
phenomena (the data) as its input whereas the synthetic
method starts with proposed building blocks and their
interrelations.  The inductive method takes the ontology
defined implicitly in the data as an inherent assumption
whereas the synthetic method constructs an ontology (and
an analog that “lives” in that ontology) that can realize
the data.

Another useful way of thinking of the distinction is to
consider a mapping from the space of generators or
mechanisms to the space of phenomena.  The inductive
method starts with the phenomena and works backward
to generators.  The synthetic method, in contrast, works
forward from generator to phenomenon.  When viewed
from this perspective, it is clear that the methods are not
mutually exclusive, but are two sides of the same coin.

Contrasting these two methods helps determine how a
model can best be put to use.  Induced models hone
certain characteristics to a precise predicate against which
any new situation can be evaluated.  Synthetic models
precisely specify their constituents and leave the cones-
quences resulting from constituent interactions to be
discovered through experiments.  This implies that induc-
ed models are ideally suited for exploiting discovered
characteristics; and synthetic models are ideally suited for
exploring the consequences of assembled components.
With this in mind, we return to the original questions:
What are we doing when we model something?  How
will the model be used?  How do we purposefully choose
a modeling method that achieves our ends?

3. INTERPOLATION VS.
EXTRAPOLATION OF CONTEXT

Most models in the lower half of Fig. 1 are inductively
defined mathematical compressions of the phenomena
they are intended to model.  This restricts their predictive
capabilities to situations that are members of that induc-
tively defined set, i.e. variations of the original experi-
ment that preserve the induced parameterization and
input/output characteristics.  The induced model can only
make predictions about other members of that class of
phenomena or experiments.  This is a kind of context
interpolation.  In contrast, synthetic models present a
complex or plectic3 [5] set of characteristics.  The sys-
                                                            
2 The words “synthetic” and “constructive” are synonymous.
We somewhat arbitrarily restrict “synthetic” to indicate “assem-
bled from pre-existing parts” just for consistency.
3 Plectics refers to the study of systems where the degree of
entanglement of their constituents is, itself, an object of study.

Figure 1. Relative properties of the two major classes of
models used in biomedical research.  Model types are arranged
according to abstraction level versus biological character.  The
experimental models used for laboratory research are confined
to the upper shaded area; computational and mathematical
models are confined to the lower shaded area.  Assigned to the
upper region are model organisms (darker shading); in vitro
cell, tissue, and organ cultures; and standardized cell forms.
Assigned to the lower region are statistical (darker shading) and
mathematical models.
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temic characteristics presented might even be incoherent
or highly nonlinear in some regions of the model behav-
ior space.  Because the context in which the synthetic
model is used is not likely to comply with all the compo-
nents’ requirements and because the conditions of its
usage are compounded by stacking component require-
ments atop one another, this results in a kind of context
extrapolation.

4. THE COMPLETENESS OF A REPRESENTATION

Robustness is the primary failure of biological models we
expect to address through synthetic modeling.  Biological
models are fragile to the context that drives their develop-
ment.  For example, an ODE model formulated to repli-
cate data from specific experiments is rarely applicable to
another set of experiments without reformulation.  That
reformulation may be minor (adjustment of parameter
values) or major (addition of new terms or expansion to a
system of equations); but, it is reformulation.  The old
model is considered inadequate because it is a lossy com-
pression of the data from the first set of experiments.  It
did not capture the generative mechanism of the biolog-
ical system well enough to be reused to account for the
new data.  All such models are “broken” or incomplete in
some deep sense.  They obviously do not model their
referents very well.

The fact that current biological models are impoverished
in this way is well-known but often overlooked.  The
point was raised by Dr. Sydney Brenner at the NIH BISTI
2003 Symposium [2]: “The man in the street doesn’t
believe in evolution, because he says we’re trying to tell
him you can take a black and white television set [and]
make random mutations in it that will turn it into a
colored television set.  He knows if you tamper with a
television set, the most likely thing is you’ll break it.  So
how do biological organisms not get broken all the time?
There must be an architecture within the way they are
constructed logically and actually which makes them
resistant to this and allows evolution to proceed.  And
that will be a feature of what we’re looking at.  It will be
there; it will be underlying everything that we do.”

Discovering and understanding this robust architecture is
the goal of heuristic biological models.  Synthetic model-
ing is one technique for building such models.  In that
same keynote  address, Dr. Brenner also makes the con-
nection between the synthetic method and discovering
this robust architecture by pointing to von Neumann's
constructive proof of self-reproducing automata.
Constructive proofs are inherently heuristic.  And like
self-reproduction, this robustness to context changes or
                                                                                                 
As Dr. Gell-Mann explains, it is preferable to “complex” and
“simple” because those words carry unwarranted implications
about the systems being studied.  Using “plectic”, here, indi-
cates that the degree to which a synthetic system is simple or
complex is indeterminate when it is created.

contextual extrapolation seems to be an inherent
component of biological systems.

5. THE CASE FOR A NEW METHOD

Of course, the problem with constructive proof and, by
extension, the synthetic method as a whole, is coming up
with devices that successfully generate the behavior
sought.  What is the best means for doing that?  The way
most followed today is to seek methods that help build
better models.  Is it better models that we need or is it
methods for facilitating the building of models, a wider
variety of models made easier?  We suggest that the field
may benefit more from the latter.  When we target the
building of models, the focus shifts from the model as an
endpoint to the process of model building.  The more
models that we can build and evaluate, and the easier that
process becomes, the more likely we are to find plausible
mechanisms underlying the robust architecture of biolog-
ical systems.

We have attempted to lay the foundations for an argu-
ment for a new modeling method.  Carrying forward from
the premises that:

• effective models are developed to stay close to their
context;

• models are subjective, psychological artifacts;
• heuristic models are constructive analogs of their

referents;
we can infer that modeling efforts (especially of complex
biological referents) should be “thought experiments”
where models are constructed from building blocks and
evaluated experimentally against some criteria defined by
the usage context.

We are building a modeling method, tools that support
the method, clinically relevant models, and biomimetic
devices that adhere to this method.  These devices can fill
an important gap in how models are used to study biolog-
ical systems.  The gap is one of exploratory modeling in
the tradition of von Neumann's automata [22], Ulam's
description of “experiments in theory” [20], monte carlo
methods [9], extensions to more modern efforts like the
“opaque thought experiments” of Di Paolo [4], Mark
Tilden's BEAM robots and Danny Hillis' Tinker Toy
computer [3], Gerald Edelman's Darwin automaton [8],
and even extensions to some methods like that proposed
by Steven Bankes [1].  These efforts are united in the
emphasis they place on the synthesis of and experimen-
tation with models.

6. FURM

Biologists tend to see biological systems as comprised of
functional units at some selected level of resolution.  To
match this tendency, we center our method around the
development of functional unit analogs.  We call it the
Functional Unit Representation Method (FURM).
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The underlying assumption of unity allows us to effect-
tively use Object-Oriented (OO) design as the basis for
construction.  However, OO design does not generalize
well into biology because functional units do not have
hard boundaries and often exhibit autotelic properties not
explicitly addressed by the general OO principles of
encapsulation, polymorphism, and inheritance.  Specific-
ally, the concept of a biological functional unit entails a
degree of purposeful behavior, self-motivation, and local
agendas, whereas OO objects more closely fit a pure
stimulus-response paradigm.  So, we violate some of the
strict OO guidelines and adopt Agent-Based Modeling
(ABM) techniques where appropriate.  We suggest four
fundamental guidelines:

R1: standardize interfaces across the models;

R2: use discrete interactions;

R3: design for an extended life cycle; and

R4: define observables to be consistent across models.

These basic requirements flow down into nine more
specific requirements that are detailed in Ropella et al
2005 [14].

In addition to facilitating the creation of models, FURM
is intended to encourage disciplined experimentation with
digital computers, including keeping track of source code
as if it were an important experimental material or critical
reagent.  It is also intended to bring enough rigor to our
modeling process to allow us to automate the generation
and evaluation of models.  Evidence of success in achiev-
ing these goals will depend, fundamentally, on whether
the models we generate through FURM are successful in
their respective domains.  For example, the two frame-
works described below present us with facilities for
evaluating heuristic or predictive hypotheses about
pharmacokinetics, drug disposition, and metabolism.

The whole method can be described as follows.  Know-
ledge is acquired directly from experts and domain liter-
ature to infer a collection of building blocks and a syntax
for plugging those building blocks together.  A prototyp-
ical experiment or family of experiments is chosen from
the literature.  Building blocks are assembled to create
biomimetic devices that are controlled and measured
similarly to the original experiment.  Several computa-
tional experiments are run with alterations made to the
building blocks and their connections.  The results of the
experiments are compared to the original experimental
data and the degree to which the model results fail to
match is taken to indicate the implausibility of that model
structure.

The behaviors of surviving models can then be explored
by experimentation and the results analyzed to test exist-
ing hypotheses, provide researchers with new hypotheses,
and facilitate the design of novel experiments on the ref-

erent systems.  We expect the system and method to be a
virtual laboratory in which a computational researcher
can discover innovative explanations and propositions for
how the real biology might give rise to the phenomena
embodied in the similarity measures [12].

7. FURM ARCHITECTURE

Requirements 1-4 above provide the skeleton of the arch-
itecture.  R1 requires all the models, regardless of their
internal organization (e.g. equation-based, object-orient-
ed, etc.) or domain (e.g. scale or type of knowledge repre-
sented), to adhere to an identical interface.  To satisfy R1,
we specify that multiple model variants, preferably using
varying modeling paradigms, be run simultaneously in a
co-simulation framework [21].  As a minimum, we sug-
gest three model types (Fig. 2):  the DatModel, represent-
ing data taken from the model referent, the RefModel, a
preexisting model that has demonstrated value, and the
ArtModel, an articulated model developed synthetically.
To help ensure R1, all models are executed by an exper-
iment agent (ExperAgent), which executes the models
and takes measurements off them as they run.  The obser-
vations taken from each model should either be the same
or sufficiently similar to be automatically processed by an
observer agent to produce the derived measures by which

the models are compared.
Co-simulation and model comparison places an indirect
constraint on the models.  The biggest obstacle in comp-
aring sibling models is discretization.  To side-step this
issue for practical reasons we include R2 and force all the
models to interact with the ExperAgent and each other
through discrete interactions.  This has no implications
about the continuity of model internals, however.  A
model can be internally continuous with the discretization
occurring at the model’s encapsulation interface.  Using
discrete interactions allows us to ground the interaction of
the various models in a minimal formalism, that of par-

Figure 2.  Basic architecture for a FURM-developed frame-
work.  The Experiment Agent manages the multiple models,
which are measured by an observer, the results of which are
used to calculate derived measures.
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tially ordered sets (posets) of events, without forcing an
internal structure on the models.  For example, if one
model is a discretized continuous system of differential
equations and another model is a recurrent artificial neu-
ral network, the two models are only required to publish
their outputs and sample their inputs in a coherent way in
order to interact.  The input sampling and output publish-
ing are packaged as discrete events that may or may not
impact the evolution of the other models in co-simulation.
R2 ensures that all models do this and can interact via
discrete interactions at least at the level of the Exper-
Agent.  Models composed hierarchically are not required
to interact with other models via discrete events unless
their behavior impacts the ExperAgent, which embodies
the usage context of the co-simulation framework and the
experimental apparatus.

R3 is intended to encourage the modelers to think beyond
their immediate problem context.  The co-simulation
requirement, descending from R1, should encourage the
addition and subtraction of models at will, where one
model, or a component thereof, can be replaced by an-
other at some later point.  R3 is a stronger statement
about using “defensive” design deeper within the models
and in designing the ExperAgent so that it can tolerate
new conditions when the experimental context changes.
The lifecycle of the models that survive being exercised
in the context of the co-simulation framework is expected
to grow as they withstand the scrutiny of model compar-
ison.  Models that are invalidated, which cannot be made
commensurate with their siblings, are thrown out and
replaced by newly assembled models.  This effectively
breaks apart the development of the infrastructure from
the development of a particular model and forces model-
ers to consider the contextual and systemic issues involv-
ed in developing a model for a specific experimental
framework.

R4 provides the core for measurement of the models and
ultimately verification, validation, and accreditation (VV
&A) for any model in the framework.  The requirement
has two basic elements, one focusing on the quantification
of model observables and the other focusing on the cross-
model consistency of model observables.  VV&A are the
processes by which a user or community gains trust in a
model.  R4 establishes the concept of a similarity measure
as the source for the development of this trust.

8. EXAMPLE FRAMEWORKS

The two example frameworks, or biomimetic in silico
devices (BISDs) [7], demonstrate that the method is prac-
tical and can be applied directly to domain-specific re-
search.  The In Silico Rat Liver (ISL), was the first to be
developed using FURM and stresses the issues raised by
the method.  The In Silico Hepatic Intrinsic Clearance
(IS-HIC) framework demonstrates that FURM generates
reusable components, that the functional unit can vary

across frameworks, and that experiment protocol can be
decoupled from the construction of the models.

In Silico Rat Liver
The In Silico Rat Liver is a BISD built to include physio-
logically relevant aspects of a liver in the context of the in
situ liver perfusion protocol detailed in [11].  The experi-
mental data are outflow profiles of fractions of an admin-
istered compound.  A solution containing the compound
is injected into the liver where some is extracted.  The
ratio of solute flowing out to total solute injected provides
the outflow profile.  During the process some of the com-
pound may be metabolized.  Data for several compounds
are available [6].  The liver interacts differently with each
compound.  In some cases the compounds are extensively
metabolized.  This data is provided in the ISL DatModel,
including the capability for interpolating observations
when the simulation frequency is higher than the original
data set.

The RefModel is an accepted reference mathematical
model that consists of an ODE derived from idealized
vascular and cellular components that calculates drug
clearance over time (for details see [6]).  This ODE is
integrated based on intervals set by the ArtModel.

The ArtModel is our functional unit model.  It is an
agent-based model (ABM) whose components reflect
physiological components in the liver as determined by
liver physiology literature.  Space does not permit provid-
ing model details (See [7]).  However, the primary func-
tional unit being modeled is a liver lobule.  A lobule is a
collection of sinusoids, which are tubular structures that
guide the blood flowing in through the liver tissue
responsible for drug extraction.  Inside this tissue, the
objects responsible for metabolization of the drugs are the
liver cells, called hepatocytes.  Hepatocytes are only one
of the many constituents.  The systemic behavior that
results in the outflow profile is a function of the
collective of these constituents all operating together.

This framework and the ArtModel are experimentally
interesting because of the high degree of heterogeneity
that can be expressed in relation to current state-of-the-art
models of hepatic drug clearance.  However, since this
paper targets methodology, the interesting element, here,
is that the phenomena it attempts to represent show some
subtleties that are difficult to generate from a purely con-
structivist method.  The outflow profiles can be precisely
represented with the above ODE and the liver is a reason-
ably homogenous organ when healthy.  This means that
an ODE, which is ideal for large populations that gener-
ate aggregate phenomena, is well-suited to the task.
However, the ODE doesn’t facilitate reduction of the
high-level aggregate phenomena down to lower-level
particulate phenomena.  The liver is an interesting organ
to approach with multi-scale methods because although a
healthy liver is very homogenous, a diseased liver begins
to show some canalizing effects of low-level phenomena.
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I.e. the particulars of certain regions or components can
become critical to generating the high-level phenomena.
Hence the co-simulation of a precisely fit ODE with a
very flexible, fine-grained articulated model is a viable
method for studying the mapping from generators to
phenomena.  Results from the simulation along with
additional details can be seen in [13] and [7].

In Silico Hepatic Intrinsic Clearance
The functional unit of IS-HIC is the hepatocyte, which is
one component of the ISL and bears primary responsibil-
ity for metabolizing foreign compounds found in the
blood.  The IS-HIC framework measures the extraction or
clearance (CL) of compounds (in this case drugs) from
the “injected solution” by in silico hepatocytes.  Where
the ISL models hepatocytes in the context of their spatial
and functional roles as a part of a lobule, the IS-HIC ar-
ranges the hepatocytes on a 2 dimensional grid as if they
were in suspension culture.  There is no blood flow and
the “hepatocytes” simply sit in the “solution” and act
upon “drug molecules” as they come into contact with
them.

The DatModel represents data obtained from in vitro
experiments [10], measuring the time course for nine
unchanged compounds in cell culture media containing
freshly isolated rat hepatocytes.  As in the ISL, the Dat-
Model can interpolate the data to adhere to the inter-
actions with the ExperAgent.

The RefModel is an accepted mathematical model that
describes in vitro hepatic clearance under specific cond-
itions.  It is also an ODE and is detailed in [15] based on
work presented in [10] and [16].

In the ArtModel, hepatocytes are placed randomly in a 2D
grid as fixed objects.  Drug (and other) mobile objects are
then randomly placed within the space (external to hepat-
ocytes) based on the initial concentrations of those com-
pounds.  The mobile objects move around pseudo-ran-
domly, while the hepatocytes have the opportunity to
“take up” and “metabolize” them.  As the simulation
progresses, the number of solute objects decreases as a
consequence of metabolism.  At intervals this number is
counted, normalized and scaled to represent the concen-
tration of the compound.

Hepatocytes are very complex cells whose behavior can
vary widely depending on their context.  We began the IS-
HIC partly to help develop these complex components
separately from the ISL and partly as a mechanism to build
a model of hepatocyte behavior in vitro.  The aspect of
this framework of methodological interest lies primarily
in the fact that it is a simpler FURM construction and
allows us to demonstrate elements and consequences of
FURM that become more difficult with the more complex
ISL.  It also provides a test-bed for more advanced addi-
tions and developments to FURM like automatic selec-
tion and optimization of successful models and variations

in similarity measures.  However, the experimental
framework of the IS-HIC is scientifically relevant to the
study of hepatocytes and should help posit generative
mechanisms at an even smaller scale.  Results from IS-
HIC experiments run with 3 drugs, Diltiazem, FK1050,
and Acetaminophen are shown in [15].

9. SUMMARY

When the physicist Richard Feynman closed the door of
his Caltech office for the last time in 1988, he left a
striking epigram scrawled on the blackboard: “What I
cannot create I do not understand.”  To better understand
how living systems generate their endless variety of
robust and fragile behaviors we need to create—synthe-
size—models that can exhibit some of those behaviors.
Synthesizing a system that behaves, in some limited way,
like a naturally occurring one stimulates ideas for how
that natural system might actually work.  We can and will
continue to tinker with living systems to explore the con-
sequences of those changes, but we are far from being
able to build functioning analogs of whole systems from
inert parts.  A viable option is to build deep analog mod-
els in silico using the synthetic approach described here.
FURM provides a method for doing that within a frame-
work that also makes use of the traditional, inductive
mathematical models.

The two example products demonstrate that the method
is practical enough to produce scientifically relevant
models while retaining a pragmatic stance toward model-
ing formalisms and styles.  The ISL demonstrates some
of the classical difficulties with modeling and simulation,
including over-parameterization, validation, and discre-
tization, and incorporates some of the newer capabilities
of agent-based modeling and complex systems.  The IS-
HIC presents a simpler and, therefore, more tractable
problem showing that the method also applies at the
smaller scale and facilitates component reuse and vali-
dation across models.  In addition, the tractability of the
IS-HIC presents the opportunity to test more sophis-
ticated methods like automatic model evaluation and
optimization.

FURM brings rigor and clarity to the modeling and sim-
ulation of biological systems and helps computational
scientists think about their modeling devices, referents,
tools, and techniques at a higher level.  The method is not
complete, however.  It is only a heuristic intended to guide
the computational scientist.  It will continue to evolve as
we deal with existing difficulties.  One such difficulty lies
in continuing to bring rigor to in silico experiments.  Al-
though FURM facilitates more systematic code and mod-
el changes than less structured modeling methods, it is
still difficult to separate software engineering from exp-
erimentation.  Inscription error remains the foremost risk;
but, FURM keeps that risk at the surface of every experi-
mental context, which helps to mitigate it.
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