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 Abstract
Models are often classified based on their structure as
opposed to the context in which they are developed or found
useful.  However, a model’s development is driven by the
context in which it is expected to be used.  Because most
computer models are developed with low level
programming languages, those models often end up being
over fitted to a single, unique, context and fail to be useful
in other situations. So doing severely limits the model's
usefulness.  This problem exists in all domains where
models are used; but, it is particularly prevalent in the
modeling of biological systems because biological systems
are always changing and their behaviors can be more
sensitive to context than models in other domains.
Multiple, separate models of a biological system are
required to begin adequately representing that system's
behavior. This is in stark contrast to the biological
components, themselves.  They function in many different
situations, whereas in many of those situations their
corresponding models would fail.  This problem presents a
fundamental breakdown in the extent to which any computer
model can represent its biological referent because there is,
simultaneously, a sensitivity to context and a robustness to
changes in context that exists in the referents but not in the
models. In this paper, we present the basics of a modeling
method, FURM (Functional Unit Representation Method),
that attempts to address this breakdown by enforcing and
encouraging the use of some basic methodological model
development principles.  We briefly present a constructive,
and therefore heuristic, model of an isolated, perfused rat
liver as a first article demonstration of the method.

 1.  INTRODUCTION

What is meant by the word “model”?  The etymology
generally indicates that “model” is closely related to
“measure” [American Heritage 2000].  Taken in that sense, a
model can be thought of as a device against which to measure
an artifact or phenomenon.  This definition consolidates the
diverse uses of the word from fashion models to
geographical maps to systems of mathematical equations.

With this definition in mind, what is it we do when we
model some process, artifact, or system?  What are we
trying to create?  The biggest element of this question lies in
how the model will be compared to the referent.  What
aspects of the referent are observable?  What makes those
observables salient? Which of the observables lend
themselves to the ascription of quantity and which are more
qualitative?  This line of questioning leads us to the first
consideration in any modeling effort: use cases.  [Jacobson
et. al. 1999, Wiley 2000, and Beck 2000] The first
consideration in modeling is to determine why the model is
being created and the situations in which the model will be
used.  The use cases tell us what the model is good for, what
it must do, who it must serve, how long it must be useful, etc.

Use cases elicit the various aspects [Kiczales et. al.
1997] or facets [Zeigler 1984] of the newly posited device.
In order to do this, a common sense approach would be to
elicit the salient usage situations of the referent.  Often,
however, it is very difficult to delineate the salient aspects
of a biological object because they can appear to have a
(dense) continuum of uses and situations in which they are
relevant.  In fact, it is a well-known theorem in
metamathematics called Tarski's Theorem that “assuming
that the class of all provable sentences of the metatheory is
consistent, it is impossible to construct an adequate
definition of truth in the sense of convention T on the basis
of the metatheory”* [Tarski 1956], which leads von
Neumann to claim that for particular types of systems, their
description will be indefinitely long. [von Neumann 1966]
This forces modelers to choose, somewhat arbitrarily, the
aspects of their model from the potentially very large set of
possible properties or attributes the model might have.  One
consequence is that the modeler is now open to the
rhetorical fallacy of “begging the question” (petit io
principii) which in modeling becomes the fallacy of
“inscription error” [Smith 1996].

Given that any modeling effort may be faced with a
huge space of relevant use cases, how does a modeler
choose which use cases are salient?  The answer depends on

                                                            
* Convention T simply states how statements in the metalanguage
map to statements in the language.  It is interesting to note that
Tarski, unlike Gödel, treats colloquial language and the
philosophical understanding of truth as well as formal systems or
computer programs.
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the core context in which the model is expected to be used.
This core context provides the impetus for the development
of the model, sets the expected lifetime of the model,
defines the actors involved in its development, usage, and
maintenance, and is the source for all the model's
requirements.  The core context will usually be ambiguous
enough to preserve model extensibility while providing the
basis of a guideline for development decisions.

The core context can be as broad and ill-defined as an
entire domain like “physics” or as particular as a single very
specific process like that of the canonical traveling
salesman.  The key property of the core context lies in the
modeler's ability to collapse it into a detailed enough
prescription for what the model must do.  This reduction of
the context is particular to the modeler (or team of modelers)
and implies that the model is developed through subjective
interpretation of the modeler's perception of the context.

Hence, modeling is a subjective enterprise.  It has always
been and will always be subjective.  And when viewed this
way, it is easy to see that modeling efforts are epistemological
and cognitive processes.  They are not ontological.  Models
tell us absolutely nothing about the world, except in what they
tell us about the psychology, reasoning, and sociology of the
humans engaged in the process.  Even in the extreme cases
where a model is fully accepted by a very large population
of people, the models remain, inherently, cognitive.  For
example, up until 1960, the concept of the distance of a
meter was modeled by two marks on a metal rod kept in
Paris, France.  Everyone in the world (who had reason to
refer to things like “meters”) accepted that this metal rod
was an adequate model of the meter, due, no doubt, to many
meetings and much argumentation about the composition of
the rod, what temperature to keep it at, etc.  This type of
model becomes accepted and completely subsumed by the
knowledge and behaviors of the people who accept it so that
discussions of it are relegated to obscure subcultures,
anthropologists, and standards organizations.  Although
models like this are treated as if they are true and represent
some form of ontological knowledge, they remain models
and they are nonsensical when separated from the referent
they are intended to model.

There are many distinct ways in which modeling is
used in the study of biological systems.  A taxonomy of
biological models can be organized based on the various
contexts in which the models are used.  Figure 1 is an
illustration of relative relationships between various
categories of models, methods, and devices used in
biomedical research, circa 2000. The focus here is on
organisms. Most animal research (biological analysis) is
done with model organisms (MO). Frequently, they are
specialized inbred strains. Patients and animals not bred for
research are outside this diagram. In vivo experiments are
done on intact, living animals. There are two categories of
in vitro biological models (BMs). The first uses living parts
taken from model organisms to build (synthesize) artificial
systems that meet some objective.  Examples include in
vitro cell, tissue and organ cultures. The second comprises

standardized single cell forms, such as E. coli, the yeast S.
cerevisiae, and newer, “synthetic” organisms [Ferber 2004].
Figure 1 focuses on the first category but does not exclude
the second.  In vitro BMs are created, constructive systems.
Specialized devices, support instruments, and reagents are
required to keep the living components stable and
functioning.  As a consequence of their in vitro nature, new
properties (biological, mechanical, chemical, etc.) are
imposed onto all in vitro BMs and some original properties
are lost or altered.  Relative to referent model organisms
they are less realistic and less biological.

Acellular in vitro BMs are constructed starting with
living parts, typically isolated cells.  They are broken
(killed) and components thereof are taken for study in vitro.
Examples include cytoplasmic fractions, organelles,
nucleoplasm, reconstituted metabolic networks, etc. Many
of the original biological features are absent. Linkages
between networks and modules are severed.  Nevertheless,

Figure 1.  Model types arranged according to abstraction level
versus biological character.  The more abstract models indicate a
higher capability for simple and focused representation.  The more
realistic models indicate a higher capability for aggregating
collections of facts.  The biological axis indicates the degree to
which a model resembles, in detail, its biological referent. MO:
Model Organisms (supplies for in vitro experimentation); BM:
Biological Models (in vitro cell, tissue, and organ cultures and
standardized cell forms); BCM: Biochemical Models (studying
abstracted, specific biochemical events and processes); StM:
Statistical Models (explaining or accounting for data taken from
other models); MM: Mathematical Models (biomimetic functional
models used for prediction); GM: Graphical Models (heuristic
descriptions used for clarity and communication); BSM:
Biological Systems Models (partially heuristic, partially predictive,
biomimetic functional and structural models used for evaluating
canalizing aspects of the referent); NCMs: New Class of Models
(heuristic, biomimetic models used for evaluating explicit
hypotheses in the context of many aspects of the referent).
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the retained features are thought to mimic many corre-
sponding features in the original organism. Biochemical
models (BCMs) are assembled from individual synthetic or
purified biological components to study specific events and
processes.  Relative to acellular in vitro BMs these synthetic
BCMs are simple, abstract systems. They contain little if
any biology.  Typically, all the variables and their values are
known.

Of course, the several classes of inductive analytical
models that are used in biomedical research have no organic
components.  Statistical Models (StMs) are not actually
models of biology, but they are ubiquitous in biomedical
research, and are referred to as models.  They focus on data
and much less so on the biological processes and events that
give rise to the data.  They are models that are intended to
explain or account for the variance structure in the data.
Mathematical Models (MMs) in biomedical research
encompass a huge literature. They are all orders of magnitude
simpler than in vitro acellular models and even further
removed from in vitro and in vivo models.  Typically,
inductive analytical MMs represent abstract, very useful
metaphors of specific processes and events that occur in vitro
or in vivo. They are predictive theories, and as such they too
focus on the collected data.  Their measure of success is how
often and how well they fit the data. Graphical Models
(GMs) include formal graphs and the informal diagrams that
are intended to capture features of a researcher’s mental
model of some aspect of biology, such as her or his vision
of the factors and influences involved in transport of a
solute into and out of a cell.  Examples of GMs that fall in
between these extremes include cognitive models of
metabolic and gene regulatory networks.

Biological Systems Models (BSMs) are cognitive
models grounded in a reductionist approach to biology.
Systems of equations (typically differential equations)
and/or probabilistic networks, to name just two approaches,
are used to represent or explain known and hypothesized
phenomena.  As with MMs, BSMs begin with a long list of
simplifying assumptions that dramatically distance them
from the in vitro and in vivo BMs that were the sources of
the modeled data.  To understand biology we need to
systematically reduce the list of simplifying assumptions
with the long-range goal of striving to eliminate it.  The
inductive analytical models are simply not adequate hosts
for the specific new types of data being acquired in the
many domains of biomedical research.  We need to
understand how the parts function within a biological
whole. This opens the door to new synthetic models and
methods, including agent-based models, for understanding
biological systems.  Realization of this opportunity will
represent a new class of models that can fill The Gap in Fig.
1, as illustrated by the dark gray area in Figure 2.  We need
these new approaches to bridge the gap in understanding
between in vitro BMs and current MMs and BSMs. These
new approaches will need to work, primarily, by
decentralizing the modeling process (into modules and
components that can be plugged together in different ways)

without requiring that all the referent data be of a specific
type or that it even exist.

The new class of synthetic simulation models (NCMs)
identified in Fig. 2 will include agent-based models.  As
these NCMs become validated, they will begin to provide a
structural and interactional framework for assimilating
genomic and proteomic data.  Hybrid System Models are
needed to systematically and iteratively test and revise
prevailing ideas about how biological systems and
subsystems actually function together. The expectation is
that they will do so by virtually reassembling virtual parts
and components into a networked system of systems that
can account for an increasing fraction of the accumulating
data in combination with a shrinking list of assumptions.
Clearly, some of these new NCMs will have more in
common with in vitro and acellular biological models than
with their predecessor MMs and BSMs. That is the whole
idea.  Their design and construction are expected to draw
extensively from continuing advances in computer science
and complex systems science.  Whereas a goal of earlier
MMs was to offer fits to data and plausible predictions, the
goal of the new class NCMs will be to function as
exploratory experimental systems (synthetic in silico
constructs) that can be used iteratively to narrow the list of
competing explanations about how biological systems
function.  One example is the In Silico (rat) Liver shown in
Figure 2; it is briefly discussed at the end of this paper.  It
and related models currently under development within the
UCSF BioSystems Group are some of the first realizations
of the new class of models.

Figure 2.  An extension of Figure 1 showing a New Class of
Models (NCMs) that fills The Gap.  The in silico liver is a first
article example for this type of model and fits squarely within The
Gap but does not yet provide a full bridge.
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 2.  INDUCTION VS. SYNTHESIS

The categories of models in Fig. 1 are distinct but not
disjoint, and the usage contexts are not mutually exclusive.
In fact, they are vague and open to interpretation by the
modeler.  The purpose of laying them out is intended to help
a biological modeler make decisions about what methods
and technologies to use to achieve particular ends.  As
discussed before, those ends are best achieved by laying out
the salient use cases, which can now be organized and
determined in relation to the various contexts and model
types discussed above.

The core context of a model guides the development of
any tools and techniques the modeler might find useful for
constructing models.  This typically is an ad-hoc collection
of techniques that the modeler has previously been exposed
to and has found useful.  And some disciplines engage in
explicit attempts to provide a decision-making structure to
help choose the appropriate methods, e.g. domain analysis
in systems engineering.  The methods used by modelers
vary a great deal from very precise methods like those
recommended by the Unified Modeling Language (UML) to
very ad-hoc tools like transient drawing on white boards.
All these methods are relevant and often critical elements to
creating useful models.

When building a model to adhere to multiple use cases,
some of those cases can interact in a way that is either
contradictory or difficult to reconcile.  In many situations
there are methods to deal with conflicts, e.g. [Walker 2003]
and [Lin 1994]; but, sometimes the conflict is fundamental
and has to be resolved simply through the expertise of the
modeler.  One such fundamental conflict is that of the
difference between the inductive and synthetic methods for
building systems.

Today, the biological models in the lower half of Fig. 1
are usually built by taking data from an experimental
system, analyzing that data, creating a mapping between the
structure of the experimental system and components of the
data, then representing those components of the data with
mathematical equations.  Those equations are then
implemented, executed, and validated against the data.  This
method relies heavily on psychological induction and in
some cases on the types of induction achievable by pattern
recognition algorithms.

The inductive method [Steels and Brooks 1995] for
creating models stays very close to the data and, when
successful, provides models that extrapolate beyond the
original data from which the model was induced.  This
makes it ideal for the development of predictive models.

Although this umbrella is very broad, it is instructive to
contrast this method with constructivist or “synthetic”
methods.  The synthetic method is common in non-
biological domains and appears to have been used some in
biology, as well, particularly when constructing mechanical
or electrical analogs of biological units and the in vitro
models in the upper right of Fig. 1 (and some in vivo
models, as well).  The synthetic method consists of

proposing and constructing building blocks that can be
assembled to create an artificial system that functions in the
real world.  This artificial system or analog is exercised and
measured in the same way as its referent system.  Then the
data taken from the analog is validated against the data
taken from the referent.  The essential difference between
the two methods lies in the fact that the inductive method
explicitly uses the observed phenomena (the data) as its
input whereas the synthetic method starts with proposed
building blocks and the relations between building blocks.
A useful way to think about this distinction is that the
inductive method takes the ontology defined implicitly in
the data as an inherent assumption and the synthetic method
attempts to construct an ontology (and an analog that “lives”
in that ontology) that can realize the data.

Another useful way of thinking of the distinction
between the two methods is to think of a mapping from the
space of generators or mechanisms to the space of
phenomena.  The inductive method starts with the
phenomena and works backward to the generators in an
attempt to discover the inverse mapping from range to
domain.  The synthetic method, in contrast, works forward
from domain to range.  When phrased this way, it becomes
clear that neither method is superior and both should be
used when modeling.  Figure 3 provides a visual depiction
of how these two methods relate.

Inductively generated models have two primary
benefits over synthetically defined models.  The first,
mentioned above, is their consistency with data taken from
the referent.  The tolerance of this consistency can be
measured through similarity measures [Ropella et. al. 2003]
acting on the referent and model data.  This consistency,
with a tight enough tolerance, can provide a somewhat
trustworthy extrapolation into regions of behavior space that
are not covered in the available data, i.e. they are predictive.
The second benefit is just as important and speaks to the
feasibility of any modeling effort and is practically more
important, in some ways, than prediction.  These models
compress the complicated dynamics and structure of the real
system into a much smaller and clearer representation that
(typically, equations or systems thereof) allows us to simulate
reality faster than real-time and with relatively few resources.

However, the primary limitation of inductive modeling
is its inherent dependence on the necessary epiphanies,
insight, and experience of the modeler and the dynamics of
the people analyzing the data, publishing their experiments,
results, and conclusions, and proposing the salient
components of the model.  There is no brute force
(algorithmic) way of inferring the structure of the generator
system from the observed data.  Inductively developed
models are lossy compressions in the same way that the
observed data is a lossy representation of the system.

The primary benefit of the synthetic method is a result
of the difficult and iterative process of actually designing
and building an analog that behaves similarly to the referent.
The tacit experience the modeler gains while going through
this process and the potential behaviors of the analog in its
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finished state yield not only the potential for extrapolation,
but provide the modeler with a detailed control surface
(parameterization) that allows the analog to explore new,
possibly fundamentally different regions of behavior space.
These different regions may or may not be part of the
referent's behavior space; but this exploration can be helpful
in understanding the structure and dynamics of the referent.

Of course, the fundamental difficulty with the synthetic
method is establishing requirements for building an analog
that functions at all like the referent.  This requires
knowledge of the function of the referent, of plausible
mechanisms for that function, and of relevant observables
by which the analog and the referent will be measured.

Contrasting these two methods, which every modeler does
to some extent, is useful for determining how a model can
best be put to use.  With this in mind, we return to the original
questions:  What are we doing when we engage in the process
of modeling?  What are models used for?  How do we pur-
posefully choose a modeling method that achieves our ends?

 3.  HEURISTIC VS. PREDICTIVE MODELS

All of the above points (intuition, compression, salient
aspects, aspect resolution, model type, etc.) make it obvious
that modeling is more art and engineering than it is a science.
Building models that satisfy some set of requirements
requires many levels of expertise and interdisciplinary
interaction.  Moreover, there is no curriculum or textbook
that a neophyte modeler can study in order to become a
good modeler.  Good modelers become so as a consequence
of training and experience.  There are no shortcuts to that
practical skill.  If one wants to be a good modeler, one
simply has to build lots and lots of models.

However, it is our belief that the synthetic or
constructive method significantly contributes to a modeler's
understanding of what it means to model and how best to go
about creating effective models.  One of the best ways to
learn about a phenomenon is to try to build a device that
exhibits the behavior your looking for.  This principle is
used in the design of everything from children's toys to
electric circuits.  And it seems to have resulted in a
beneficial side effect of von Neumann's constructive efforts
to build reproductive machines.  [McMullin 2000].

With this in mind, it is a small jump to see why many
biological models are heuristically impoverished.  Most
biological models in the lower half of Fig. 1 are inductively
defined mathematical compressions of the phenomena they
are intended to model rather than being constructive models
used as deep analogs of their referents.

There are many aspects of biological systems that
cannot now be adequately modeled.  The primary specific
failure of biological models we expect to address through
constructive modeling is robustness.  Biological models are
fragile to the context that drives their development.  For
example, a specific ODE model formulated to replicate the
data taken from a specific set of biological experiments is
rarely applicable to another set of experiments without

reformulation.  That reformulation may be minor
(adjustment of parameter values) or major (addition of new
terms or expansion to a system of equations); but it is
reformulation.  The old model is considered inadequate
because it is a lossy compression of the data from the first
set of experiments.  It did not capture the generative
mechanism of the biological system in order to be reused to
account for the new experimental data.  All of these models
are “broken” in some deep sense.  They obviously do not
model their referents very well.

The fact that current biological models are this
impoverished is well known but often overlooked.  The
point was recently raised by Dr. Sydney Brenner at the NIH
BISTI 2003 Symposium: “The man in the street doesn’t
believe in evolution, because he says we’re trying to tell him
you can take a black and white television set, you can make
random mutations in it that will turn it into a colored
television set.  He knows if you tamper with a television set,
the most likely thing is you’ll break it.  So how do
biological organisms not get broken all the time?  That tells

Figure 3.  Conceptual model of the synthetic and inductive
modeling processes showing that they are, at heart, the same process
but with different initial and final states.
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us there must be an architecture within the way they are
constructed logically and actually which makes them
resistant to this and allows evolution to proceed.  And that
will be a feature of what we’re looking at.  It will be there; it
will be underlying everything that we do.”

Discovering and understanding this robust architecture
is the goal of heuristic biological models.  And the synthetic
method is one technique for building such models.  In that
same keynote talk, Dr. Brenner also makes the connection
between the synthetic method and discovering this robust
architecture by pointing to von Neumann's constructive
proof of self-reproducing automata.  Constructive proofs are
inherently heuristic.

Of course, the problem with constructive proof and, by
extension, the synthetic method as a whole, is coming up
with devices that successfully generate the behavior sought.
Take that consideration along with the prior point that good
modelers emerge out of training and experience and it is
easy to realize that what we need are methods for
facilitating the building of models, rather than methods that
help build better models.  The focus will not be on the
resulting models.  The focus will be on the process of model
building.  The more models we can build and evaluate, the
more likely we are to find plausible mechanisms underlying
the robust architecture of biological systems.

 4.  THE CASE FOR A NEW METHOD

We have attempted to lay the foundations for the
argument for a new modeling method.  Carrying forward
from the propositions that:
ß effective models are developed to stay close to their

context;
ß models are purely subjective, psychological artifacts;
ß the way to be good at modeling is to build many

models; and
ß heuristic models are constructive analogs of their

referents;
we can tentatively infer that modeling efforts (especially of
complex biological referents) should be “thought
experiments” where many different models are constructed
out of many sets of primitive building blocks and evaluated
against some criteria defined by the context.

We are engaged in an attempt to establish whether this
conclusion is sound or not by building a modeling method,
tools that support the method, and clinically relevant models
that adhere to the method.

To place this effort into the model taxonomy above, we
are further proposing that these NCMs can fill a gap in the
way biological models are used in the study of biological
systems.  The NCMs are developed using the synthetic
method to explore the space of possible mechanisms, biotic
and abiotic alike, that can generate the salient aspects of
biological systems.  The gap is one of exploratory
modeling in the tradition of von Neumann's automata [von
Neumann 1966], Ulam's description of “experiments in
theory” [Ulam 1960], and monte carlo methods [Metropolis

and Ulam 1949] and which extend to more modern efforts
like the “opaque thought experiments” of [Di Paolo et. al.
2000], Mark Tilden's BEAM robots, Danny Hillis' Tinker
Toy computer [Dewdney 1989] , and Gerald Edelman's
Darwin automaton [Krichmar and Edelman 2002].  These
efforts are united in the emphasis they place on the synthesis
of and experimentation with many various models.

 5.  FURM

The modeling method we have developed is one
compiled out of behaviors learned to be effective through
our modeling experience.  The guidelines that compose the
method are subject to change and are somewhat ambiguous
as befits methodology.

Because of the overwhelming tendency of biologists to
see biological systems, at the selected level of resolution, as
being composed of functional units, we have chosen to
center the method around the development of functional unit
analogs.  This means that the models that are developed will
adopt a perspective that biological units do exist and have
some form of unity.  Hence we call the method the
Functional Unit Representation Method (FURM).

This underlying assumption of unity allows us to
effectively use Object-Oriented (OO) technologies as the
basis for the constructive models.  However, OO does not
generalize well into biology because functional units do not
have hard boundaries and often exhibit autotelic properties.
So, we violate some of the strict OO guidelines and adopt
Agent-Based Modeling (ABM) techniques where
appropriate.  We suggest four fundamental guidelines:
ß standardize interfaces to multi-paradigm, multi-mode;

and trans-domain (a.k.a. cross-trophic) models;
ß use discrete interactions;
ß design for an extended life cycle; and
ß define observables that will submit to a similarity

measure.
For our modeling functional units, the preceding four

guidelines flow down into nine more concrete behaviors
(principles).
1. Iterative Modeling - Because of the nature of biological

systems, there can be no optimal or finished model.
Design and build so that models can undergo continual
evolution.

2. Model Comparison/Contrast - Isolated models are
nonsense.  They only make sense in relation,
comparison, and contrast to other models.

3. V&V - Every component of a model should be open to
validation (data permitting) based on clearly defined
measures.  Verification should be limited to the
examination of networks of validatable components.

4. Aspect-Oriented Modeling - Models must be capable of
representing multiple, possibly incommensurate,
perspectives.

5. Arbitrary Functional Granularity - The composition of
any biological system can be dynamic, and so it is open
to interpretation.  Hence fixed compositional attributes
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(like a specific networked hierarchy) will always be
weak points in a given model.  If a model preserves the
ability to re-specify or re-interpret its functional
granularity, these weak points are hardened.

6. Experimental Procedure Encapsulation - Capture
experimental procedures in an unambiguous way so
that different experiments give similarly formatted
results and are easily repeatable, preferably
automatically repeatable, and extensible.

7. Multiple Models - Prefer running multiple models of
the same referent in tandem.

8. Automated Model Generation - Build mechanisms to
automate (or at least assist in) the generation of new
models.

9. Experimental Computing - Treat any computational
process as if it were a black box with an impenetrable
boundary around it.

FURM is intended to do two primary things:
ß Encourage disciplined experimentation with digital

computers, including the, still rare, discipline of
keeping track of source code as a type of experimental
material like a chemical compound or a device, and

ß Bring enough rigor to the modeling process to allow us
to automate the generation and evaluation of models.

If we make progress on either of these goals, we will
consider that success as supporting evidence for the above
inference that modeling should be a thinking tool.  The
method, as it stands, is enough to make progress on the first
goal.  If it is adopted and used regularly by even a small
group of biological modelers, then it will push the
community further in the direction of disciplined
exploratory modeling.  Evidence of success will depend,
fundamentally, on whether the models we generate through
FURM are successful in their respective domains.  For
example, the ISL described below presents us with a facility
for evaluating heuristic or predictive hypotheses about
pharmacokinetics.

The second goal, however, requires an additional
component that has not yet been developed.  One or more
generative mechanisms must be created from which to
automatically generate new models.  Our current plan is to
use the models we develop with knowledge acquired
directly from experts and domain literature to infer a
collection of building blocks and a syntax for plugging
those building blocks together to create models.  Then we
intend to apply an evolutionary algorithm, with our
similarity measures providing the selection mechanism, to
the models so generated.  The successful models can then be
analyzed to provide researchers with brain food to help them
think about and design experiments on the referent systems.

A common problem in evolutionary computing is the
generation of unintelligible (and non-analytic) individuals.
Because the building blocks and syntax will not be a general
purpose computing language and because the method
centers on functional units, we do not expect to be faced
with non-analytic models.

In the end, we expect the system to be a biological
sandbox in which a biologist (or modeler) can discover
innovative explanations and propositions for how the real
biology might give rise to the phenomena embodied in the
similarity measures.  Ideally, it would operate as a
biologist's assistant.

Brief mention also needs to be made of other “soft
computing” techniques that may help us to achieve the
above listed goals.  There seem to be many places where AI
techniques like fuzzy systems, ANNs, Bayesian networks,
etc. can augment the basic method in order to make
automatic model generation and selection steadily more
efficient.  It is our hope that these techniques can both
constrain and expand the system in order to help the
modeler balance the healthy tug-of-war between exploration
and exploitation in science.

 6.  THE IN SILICO RAT LIVER

A liver is built of several lobes, each made up of
hundreds of lobules.  Each lobule consists of several acini
organized around terminal afferent vessels.  See Figure 4.
An acinus is a network of sinusoids, tubular structures that
carry blood from the portal vein (PV) to the central hepatic
vein (CV).  The sinusoids separate mesh works of one-cell
thick plates made up of hepatocytes.  Intra-acinar
hepatocytes exhibit properties that are location-specific,
often identified by different zones.  To test and challenge
our current concepts about liver function and the role of
hepatic microenvironments in normal and disease states, we
need models that can represent a liver as an organized
assembly of individually distinct primary units, either acini
or lobules.  The new models need to be sufficiently flexible

Figure 4.  An illustration of general hepatic lobule structure.
Lobules are comprised of several acini, a network of sinusoids
connecting the terminal portal vein tract (PV) to the central hepatic
vein (CV).  Within the model the sinusoid is represented by a
directed graph with nodes in three zones and agent structures
called Sinusoidal Segments (SS) placed at each node.  A: terminal
arteriole.
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to represent different aspects of hepatic biology at several
levels of resolution.  Our in silico liver (ISL) is such a model.

The in situ liver perfusion protocol that is the source of
our experimental data is detailed in [Roberts and Anissimov
1999].  The experimental data are outflow profiles of
fractions of an administered compound.  Data for several
compounds are available.  The liver interacts differently
with each compound.  In some cases the compounds are
extensively metabolized.

Two in silico system models are implemented.
RefModel is the accepted, reference mathematical model
(for details see [Hung et. al. 2001]).  ArtModel is our
functional unit model.  Isolated parameter vectors are
chosen based on some criteria for likely solutions.  Input
parameters and initial conditions are iterated until some
stopping criteria are met.  The models are run with those
parameter vectors.  Output is logged over time.
Measurements are taken and plotted in conjunction with the
experimental in situ data.  The plots from ArtModel are
identified as being close, or not, to the corresponding in situ
data using a similarity measure.

The explicit hypothesis being tested by the in silico
experiments is that the selected parameter vectors cause the
model to generate output that is experimentally
indistinguishable from the in situ data.  The similarity
measure can be used to automate the evaluation of the
solution sets put forth by the models.  Those results make
possible automatic searches of the parameter space for
regions that, together with the events elicited by the models,
solve the problem (e.g., match the in situ data).

The assumptions made, especially those represented by
the experimental data, are too numerous to delineate.  So we
focus on those deemed most salient.  At the highest level we
assume that rat livers are roughly equivalent and that the
perfusion technique and experiments do not push the liver
into pathological states.  The RefModel assumes that both
liver vascular components and the contributions of the
various pieces of the experimental apparatus can be pooled
(see [Roberts and Anissimov 1999] for details).  The
ArtModel assumes that liver function, as a whole, is an
aggregate of acinus function, that sinusoids are primarily
vascular objects, and that transit time for perfusate is
governed by stochastic interactions between various agents
inside the vascular structures in combination with a
perfusion pressure at the inlet catheter and PV.  At a more
detailed level the four primary assumptions are:

ß Outflow profiles alone are lossy projections of liver
behavior.  Models induced from such profiles are not
rich enough for knowledge discovery.  More accurate
physiological models are necessary to begin fully
exploring the liver behavior space.

ß Hepatic vascular structure can be represented by a
directed graph.

ß The primary functional unit is the acinus or composites
thereof.

ß Outflow for an inert, polar solute such as sucrose is
solely a function of the extracellular (vascular cavity)
space, its geometry, and properties.

At present, we use a simple interval similarity measure.
A set of experimental outflow profiles is used as training
data.  From this data, we calculate a distance, D , from a
reference that will be the basis for a match.  We then take
two outflow profiles and pick one to be the reference
profile, Pr.  For each observation in Pr create a lower, Pl,
and an upper, Pu, bound by multiplying that observation by
(1 – D) and (1 + D), respectively.  The two curves Pl and Pu

are the lower and upper bounds of a band around Pr.  The
two outflow profiles are deemed similar if the second
profile, P, stays within the band.  The distance D  is the
standard deviation of the array of relative differences
between each observation and the mean observations at that
time.  For the training set we choose repeat experimental
data on the same subject to calculate D.  This allows us to
arrive at an estimate of intrasubject variability.

Results from the simulation along with additional
details can be seen in [Ropella and Hunt 2003].

 7.  DISCUSSION

FURM is intended to assist the computational biologist
in bringing more discipline and more of the accumulating,
research-derived information to the upstream development
of widely different models and to assist in exploring the
range of behaviors of any given model and its referent
system.

Scientific modelers often restrict themselves in the
methods they use and in the data on which they focus.  Their
models often assume many simplifying properties (like
linearity) to make them easier to use, understand, or teach.
At times, sheer psychological inertia prevents new or
counter-intuitive models from gaining ground or being
perceived as credible.  When methods are firmly based on
validation (or invalidation), their origin does not matter.
What matters is whether or not they are useful.

FURM, in its small way, is intended to help expand and
formalize the methods by which new and conceptually variant
models can be created, evaluated, and evolved.  The ISL
consists of an entirely new model of the liver.  In and of itself,
it may or may not prove useful in explanation or prediction of
actual liver behavior.  But when used and evolved side-by-
side with data against which to validate and other trusted
models with which to compare, it presents us with a vehicle
for continual clarification of what may be going on within
the liver without restricting our use of other models.

The ISL strives to replicate the experimental procedure
that produced the experimental data sets.  Obviously, there
are overwhelming differences between any in silico model
and an in vitro experimental biological system that no
amount of discipline can reconcile.  Examples of these in
the ISL are the computational limitations that disallow (or
dramatically increase the cost of) the simulation of moles of
solute and a realistic population size of primary hepatic
units and the cells that comprise them.  However, because
the ISL is validation-centric, what matters is whether or not
the computation mimics the behavior of the real system to
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the extent captured in the experimental data and within the
other models being used.  The ISL achieves this by focusing
on the design, execution, and analysis of experiments.
FURM is expanding modeling methods to cover and
account for methods that have evolved and are used by
nature to obtain the referent systems themselves.  FURM,
by positing methods for the creation, evolution,
measurement, and selection of computational
representations of functional units in biology, is doing just
that.
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